МЕТОДЫ ИДЕНТИФИКАЦИИ И МОДЕЛИРОВАНИЯ В СИСТЕМАХ ГИДРОАВТОМАТИЧЕСКИХ УСТРОЙСТВ ОЧИСТКИ ВОДЫ ОТ НАНОСОВ

К.А.Пресняков

К.т.н., ИАИТ НАН КР, Кыргызстан

Предложено решение проблемы очистки воды от наносов посредством разработки методов идентификации, моделирования и гидроавтоматических устройств очистки воды.

Проблема очистки воды от наносов имеет место в связи с тем, что речные потоки в водных магистралях переносят значительное количество влекомых и взвешенных наносов, и возникновением необходимости сохранности и поддержания в рабочем состоянии гидротехнических сооружений и их элементов [1].

Структурная блок-схема решения указанной проблемы включает (рис.1) основные блоки разработки: методов идентификации режимов и параметров открытых водотоков (блок 1), методов моделирования распределений основных характеристик взвесенесущего потока воды (блок 4) и гидроавтоматических устройств для очистки воды от наносов (блок 8).

Метод идентификации гидравлического и наносного режимов потоков в верхнем бьефе водозаборного сооружения (блок 2)основан на новом эмпирическом подходе: одноточечные измерения (стрежневая вертикаль) средних (по сечению потока) скорости \bar{u} и мутности \bar{S} воды, причем относительная координата измерения скорости $\tilde{y}(\bar{u}) = 0.4$ глубины наполнения водотока, а для мутности – $\tilde{y}(\bar{S})$ зависит от параметра гравитационной теории β_{cp} , интенсивности турбулентности потока J_T и функции шероховатости дна водотока $f(\alpha)$ – [блок 2, ф. 1]. Указанный метод идентификации (один из его вариантов защищен патентом КР [2]) позволяет выявить условия функционирования сооружения І-го этапа борьбы с наносами (эмпирическая идентификация) и осуществить технологический процесс очистки воды от подавляющей части влекомых наносов.

Методика идентификации *и*, μ^{*} – технологических параметров (блок 3) заключается в идентификации их эмпирических значений полуэмпирическими моделями:

- в рамках диффузионной теории понятия индивидуальных жидких объемов, активного слоя наносов, мутности взмыва, гидромеханического параметра наносов;
- в пределах гравитационной теории концепция работы взвешивания, модель двухфазного дисперсоида.

Упомянутая методика идентификации позволяет установить условия функционирования сооружений II-го этапа борьбы с наносами – например, по мутности потока и расходу \overline{G} взвешенных наносов (блок 3, ф. 2), что представляет собой исходную информацию для разработки соответствующих гидроавтоматических устройств.

^{*)} Обычные обозначения: µ – эмпирическое и S – теоретическое значения мутности соответственно.

Рис. 1. Структурная блок-схема решения проблемы очистки воды от наносов

Математическая модель установившегося радиального распределения скорости вращения воды (блок 5) основана на результатах экспериментальных исследований физических моделей вращающейся жидкости (в замкнутом объеме – вокруг горизонтальной и вертикальной осей вращения; в открытых емкостях – с наличием притока и оттока жидкой массы). Эта модель устанавливает зависимость скорости вращения воды от радиуса вращения *r*, характерных значений скорости центрального ядра вращения u_x и его радиуса r_x в активной (вблизи ядра) и пассивной (около неподвижной стенки) зонах течения (блок 5, ф. 3,4).

Применение основных результатов полуэмпирической гравитационной теории М.А.Великанова к идентификации наших экспериментальных исследований предопределяет необходимость:

- установления и исследования возможности использования модели двухфазного дисперсоида. Выявлено и обосновано – на основе анализа ограничения частот – ведущее условие применимости подобной модели к взвесенесущему потоку воды, устанавливающее соотнесенность между собой отношения W/ū (W – гидравлическая крупность взвешенных наносов) и числа Фруда Fr (блок 6, ф.5) при сопутствующем равенстве пульсационных характеристик твердой и жидкой фаз;
- выявления легитимности концепции работы взвешивания. Для этого обратимся к уравнению энергобаланса осредненного движения – М.А.Великанов [3,c.119], усредненному нами последовательно по времени *t* и вертикальной координате *y* (индексы усреднения опущены)

$$\frac{\overline{u} \cdot |u' \cdot v'|}{H} = a \cdot g \cdot W \cdot \overline{S} \cdot (1 - \overline{S}), \qquad (*)$$

где $\overline{|u' \cdot v'|}$ – средний модуль корреляционного момента жидкой фазы; H – глубина наполнения водотока; g – ускорение свободного падения.

Выражение (*) является уравнением второй степени относительно \overline{S} , одним из действительных корней^{**)} которого выступает соотношение

$$\overline{S} = 0.5 - \left[0.25 - \frac{\overline{u} \cdot |\overline{u' \cdot v'}|}{a \cdot g \cdot W \cdot H}\right]^{1/2}.$$
(**)

Условием действительности упомянутых корней является соотношение между W/\bar{u} и средним модулем корреляционного момента и глубиной наполнения водотока (блок 6, ф.6).

Методы моделирования позволяют идентифицировать движение воды и взвешенных наносов в гидроавтоматических устройствах очистки воды.

Новые гидроавтоматические устройства (на них получены 7 патентов и 7 авторских свидетельств):

• идентифицируют процесс очистки воды от наносов, т.к. определяют его положение в технологической цепочке «водоисточник – русло реки – водозабор (и І этап борьбы с

^{**)} Второй корень прогнозирует $\overline{S} > 0.5$, что соответствует напорному гидротранспорту. Нами он не рассмотрен, т.к. в сфере наших интересов – традиционное гравитационное распределение наносов.

наносами) – магистральный канал – водоотбор (и II этап борьбы с наносами) – оросительный канал»;

- моделируют указанный процесс, т.к. благодаря своим конструктивным и технологическим особенностям способствуют рациональной и эффективной организации движения воды и взвешенных наносов в пределах самих устройств;
- осуществляют надежную и качественную очистку воды от взвешенных наносов на II этапе борьбы с ними.

Внутренние связи между отдельными этапами поставленной проблемы и единый подход к ее решению подчеркивают следующие обстоятельства.

Полуэмпирические теории, привлекаемые к анализу и интерпретации наших результатов, хоть и различаются [пропорциональность транспортирующей способности потока квадрату (диффузия) и кубу (гравитация) средней скорости; области применения – равнинные реки с мелкими взвешенными наносами (диффузия), реки горно-предгорной зоны с более крупными взвешенными наносами (гравитация)], но при выводе распределения по глубине потока основополагающего параметра – мутноси *S* обе они используют достаточно расплывчатое и неопределенное понятие коэффициента турбулентного перемешивания.

Наши результаты обнаруживают сопоставимости по порядку величины с отдельными положениями гравитационной теории, близкой к нашим материалам по области применимости.

Сравнение расчета по формуле (**) с экспериментом на примере ПК р. Тору-Агыр (табл. 1) позволило установить следующее:

во-первых, опыт 7 выпадает из нашего рассмотрения, т.к. для него левая и правая части соотношения (рис.1, блок 6, ф.6) одного порядка (под знаком радикала в (**) могут быть как знак «плюс», так и «минус», а возможно и нулевое значение);

во-вторых, для остальных 11 (из 12) циклов измерений левая часть (рис. 1, блок 6, ф.6) стабильно выше правой – в среднем они соотносятся как (0,10±0,03)/(0,05±0,01) ~2;

в-третьих, как следствие, эксперимент (в отношении средней относительной мутности) соответствует расчету – согласно концепции работ взвешивания – по порядку величины (0,4±0,1).

Применение формулы (**) для условий дополнительной автоматической очистки воды от взвешенных наносов (гидроавтоматическое устройство по А.с. СССР №1546547) позволило выявить следующее:

сопоставимость по порядку величины эмпирических результатов с расчетами (табл. 2) – для подводящего канала указанного устройства отношение $\overline{S}^{\circ}/\overline{S}^{P}$ равно 0,29±0,09, а для центробежной камеры в составе этого устройства 0,20±0,06;

неприменимость расчета (**) к случаю отводящего канала (осветленная вода) рассматриваемого гидроавтоматического устройства (при существенном уменьшении содержания и крупности взвешенных наносов, т.е. в практическом отсутствии агентов взвешивания, понятие работы взвешивания теряет свой смысл).

Таблица 1

Сравнение расчета (**) с экспериментом (ПК р. Гору-Аигыр)	
---	--

)IIbIT	Геометри- ческая крупность	Гидравли- ческая крупность	Средняя скорость	W/\overline{u}	Динами- ческая скорость	Корреля- ционный момент	Глубина напол- нения	$4 \cdot \overline{ u' \cdot v' }$	Знак подко- ренного	Средняя относительная мутность воды		Экспе- римен- тальные	
0	наносов \overline{d} , мм	наносов W,м/с	\overline{u} , м/с		и _* , м/с	$ u' \cdot v' ,$ M^2/c^2	водотока Н, м	agH	выражения	экспер.	расчет.	отношению к расчетным	
1.	0,71	0,0748	1,27	0,06±0,02	0,210	0,0273	0,20	0,030±0,007	плюс	0,063	0,17	0,37	
2.	0,88	0,0951	1,14	0,08±0,02	0,196	0,0239	0,17	0,040±0,007	плюс	0,041	0,12	0,35	
3.	1,78	0,178	1,94	0,09±0,03	0,236	0,0345	0,26	0,030±0,007	плюс	0,039	0,10	0,39	
4.	1,56	0,166	1,65	0,10±0,03	0,242	0,0363	0,23	0,040±0,008	плюс	0,043	0,11	0,40	
5.	2,08	0,194	1,87	0,10±0,03	0,273	0,0462	0,26	0,040±0,009	плюс	0,045	0,12	0,37	
6.	1,31	0,141	1,65	0,08±0,03	0,251	0,0391	0,21	0,050±0,009	плюс	0,076	0,16	0,47	
7.	1,72	0,176	1,90	0,09±0,03	0,284	0,0700	0,19	0,10±0,02	неопреде- ленность	0,065	неопре	еделенность	
9.	1,24	0,135	1,39	0,10±0,03	0,254	0,0400	0,15	0,07±0,01	плюс	0,052	0,22	0,24	
{8;10}	1,03	0,112	1,15	0,10±0,03	0,275	0,0469	0,14	0,08±0,02	плюс	0,150	0,31	0,48	
{11;12}	1,77	0,179	1,31	0,14±0,04	0,217	0,0292	0,20	0,038±0,008	плюс	0,052	0,075	0,70	
{13;14}	1,86	0,183	1,41	0,13±0,04	0,234	0,0331	0,18	0,045±0,009	плюс	0,061	0,10	0,63	
15	2,24	0,201	1,46	0,14±0,04	0,313	0,0607	0,17	0,09±0,02	плюс	0,050	0,20	0,25	
			$cp = 0,10\pm0,03$				$cp = 0,05\pm0,01$		плюс		cp	= 0,4±0,1	

Сравнение расчета (**) с экспериментом (случай дополнительной очистки воды от взвешенных наносов – гидроавтоматическое устройство по А.с. СССР № 1546547)

Геометрическая крупность наносов \vec{d} , мм	Гидравли- ческая крупность наносов W, м/с	Средняя скорость воды \overline{u} , м/с	W/ū	Динами- ческая скорость <i>U</i> _* , м/с	Корреля- ционный момент $\overline{ u' \cdot v' }$, M^2/c^2	Глубина напол- нения водотока Н, м	$\frac{4 \cdot \overline{ u' \cdot v' }}{agH}$	Знак подкоренного выражения	Сре относи мутнос экспер.	дняя тельная ть воды расчет.	Эксперимен- тальные значения по отношению к расчетным
подводящий канал											
0,37	0,0377	0,18	0,21±0,06	0,267	0,0441	0,145	0,08±0,02	плюс	0,0288	0,0999	0,29±0,09
камера											
0,42	0,0417	0,70	0,06±0,02	0,134	0,0112	0,092	0,030±0,006	плюс	0,0288	0,148	0,20±0,06
отводящий канал											
0,17	0,0154	0,65	0,024±0,007	0,157	0,0152	0,025	0,15±0,03	минус	0,113	Нет смысла	Неопреде- ленный

В целом же наблюдается любопытная тенденция – с уменьшением наносной нагрузки на водоток увеличивается расхождение эксперимента и расчета (табл. 1,2): ПК р. Тору-Айгыр (финиш I и старт II этапов борьбы с наносами) $\overline{S}^{\,\circ}/\overline{S}^{\,P} = 0.4 \pm 0.1$; гидроавтоматическое устройство (II этап) $\overline{S}^{\,\circ}/\overline{S}^{\,P} = (0.29 \pm 0.09)...(0.20 \pm 0.06).$

Разработанные нами новые гидроавтоматические устройства моделируют и позволяют осуществлять:

- автоматическое управление функционированием промывной камеры отстойника по А.с. СССР №1744181 (1992г.);
- автоматическую поэтапную очистку воды от наносов по А.с. СССР №1700135 (1991г.);
- автоматическую дополнительную очистку воды от наносов по А.с. СССР №1546547 (1990г.);
- очистку воды от наносов с последовательной **автоматической** их эвакуацией из устройства по А.с. СССР №1767078 (1992г.);
- автоматическую очистку воды от взвешенных наносов посредством пакетов фильтрующих элементов по патенту КР № 282 (2000г.) или сетчатых барабанов по патенту РФ № 2111309 (1998г.);
- автоматическую очистку воды от наносов посредством винтовой турбины по патенту РФ № 2010612 (1994г.);
- автоматизированную защиту наносорегулирующего сооружения от завала наносами по патенту РФ № 2109104 (1998г.);
- автоматизированную очистку воды от наносов [посредством прямоугольного фильтрующего элемента по А.с. СССР №1677163 (1991г.)]; от взвешенных наносов [посредством плоского полукружного по патенту РФ № 2005847 (1994г.) или цилиндрического по А.с. СССР №1763559 (1992г.) фильтрующих элементов];
- промыв наносных отложений из емкости криволинейного бьефа по А.с. СССР №1788139 (1993г.);
- водомерные свойства спиральной камеры по патенту РФ № 2010177 (1994г.);
- естественное осаждение наносов по патенту РФ № 2076169 (1997г.).

Литература

- 1. Пресняков К.А.. Разработка технических средств и устройств гидроавтоматики для очистки воды от наносов / Под научной редакцией д.т.н., проф., акад. НАН КР Ж.Ш.Шаршеналиева.– Бишкек: Илим, 2009. 306с.
- 2. Способ идентификации гидравлического и наносного режимов потока в бьефе гидротехнического сооружения / К.А.Пресняков // Патент КР №1169 //Бюллетень патентов и товарных знаков КР. Бишкек: Кыргызпатент. №7. 31.07.2009. 16 с.
- 3. Великанов М.А. Динамика русловых потоков. Т.2. Наносы и русло. М.: Госиздат техн.-теор.лит., 1955. 323с.