УДК 519.6:533.7

А.Дж. Картанова¹, <u>a.kartanova@mail.ru</u> С.М.Сулайманова², <u>sulai@bk.ru</u> А.Б. Абдрасакова¹ <u>aizada_abdrasakova@yahoo.com</u> ¹Кыргызский государственный университет строительства, транспорта и архитектуры им. Н.Исанова, Бишкек, Кыргызстан ²Кыргызский национальный аграрный университет им. К.И.Скрябина, Бишкек, Кыргызстан

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ДВУХФАЗНОГО ТЕЧЕНИЯ СМЕСИ ГАЗА И ТВЕРДЫХ ЧАСТИЦ В КАНАЛЕ ПЕРЕМЕННОГО СЕЧЕНИЯ

Рассматривается задача двухфазного течения смеси газа и твердых частиц под давлением в сопловой насадке с целью определения физических закономерностей процесса течения, влияния входного давления и объёмного содержания твердой фазы в смеси на износ сопла. Компьютерное моделирование процесса двухфазного течения смеси газа и твердых частиц в канале переменного сечения проводится в системе инженерных расчетов Ansys Fluent 15.0.

Ключевые слова: двухфазное течение, твердые частицы, гидроабразивная резка, износ сопла, компьютерная модель.

Введение. Для оптимального управления процессами в гидроустройствах и в гидроабразивных установках, в которых порождаются струи сверхвысокого давления, необходимо уметь моделировать эти процессы. Отметим, что из-за относительно высокого давления, используемого в количестве порядка р ~ 400 МПа, скорость струи соответственно становится довольно высокой. Твердые частицы, движущиеся с соответствующей высокой скоростью потока, производят касательное напряжение на стенки сопла. Это вызывает эрозию сопла, благодаря чему эффективный диаметр сопла может значительно изменяться, что приводит к уменьшению кинетической энергии выхода струи. Это не только отражается на долговечности сопла, но и на процессе обработки в виду уменьшения кинетической энергии струи.

С учетом этого аспекта необходимо исследовать не только влияние входного давления смеси газа и твердых частиц на износ стенки, но также влияние объемного содержания твердых частиц в смеси на физические закономерности параметров двухфазного течения в канале.

Методы и материалы. Численное моделирование проводится с использованием многофазной модели Эйлера. Для стационарного несжимаемого потока решаются дифференциальные уравнения в частных производных сохранения массы и количества движения. Связь скорости и давления осуществлялась через фазово-симметричный алгоритм SIMPLE (Semi Implicit Method for Pressure-Linked Equations), разработанный С.В. Патанкаром [1]. В качества схемы решения или дискретизации модели были выбраны QUICK (Quadratic Upwind Interpolation for Convective Kinematics) схемы третьего порядка точности, которая применяется для ортогональных сеток и при

высоком их качестве позволяет получить дискретизации третьего порядка точности вдоль линии потока. Турбулентность моделируется с использованием Realizable k-ε – модели турбулентности для правильной сходимости решения [2].

Объемная доля каждой фазы рассчитывается из уравнения неразрывности (1) [3-5]:

$$\frac{1}{\rho_{\rm rq}} \left(\frac{\partial}{\partial t} \left(\alpha_{\rm q} \rho_{\rm q} \right) + \nabla \cdot \left(\alpha_{\rm q} \rho_{\rm q} \vec{\rm v}_{\rm q} \right) \right) = \sum_{\rm p=1}^{\rm N} \left(\dot{\rm m}_{\rm pq} - \dot{\rm m}_{\rm qp} \right), \tag{1}$$

 ρ_{rq} – эталонная плотность фазы или усредненная объемная плотность q-й фазы в области решения кг/м³, ρ_q – плотность q-й фазы кг/м³, \vec{V}_q – скорость q-й фазы, α – объемная доля q-й фазы, \dot{m}_{pq} – массовый расход смеси м³/с характеризует перенос масс от p-й фазы к q-й фазе, и \dot{m}_{qp} характеризует перенос масс от фазы q к фазе p. Здесь нижние индексы обозначают p, q – фазы.

Уравнения движения (2) для твердой фазы:

$$\frac{\partial}{\partial t} (\alpha_{s} \rho_{s} \vec{v}_{s}) + \nabla \cdot (\alpha_{s} \rho_{s} \vec{v}_{s} \vec{v}_{a}) = -\alpha_{s} \nabla p - \nabla p_{s} + \nabla \cdot \tau_{s} + \alpha_{s} \rho_{s} \vec{g} + \sum_{l=1}^{N} [k_{ls} (\vec{v}_{l} - \vec{v}_{s}) + (\dot{m}_{ls} \vec{v}_{ls} - \dot{m}_{sl} \vec{v}_{sl})] + (\overline{F}_{s} + \overline{F}_{lift,s} + \overline{F}_{vm,s}).$$

$$(2)$$

Индексы l – жидкая (liquid) фаза и s – твердая (solid) фаза, g–гравитационные силы, F_{Lift} – подъемная сила, –внешняя сила, F_{vm} –виртуальная массовая сила, p – общее давление фаз, τ_q – фазовый тензор напряжений q-й фазы, p_s – давление s-твердой фазы, k_{ls}=k_{sl} – коэффициент обмена между l - жидкой и s - твердой фазами, N–общее число фаз.

$$\tau_q = \alpha_q \mu_q \left(\nabla \vec{v}_q + \nabla \vec{v}_q^T \right) + \alpha_q \left(\lambda_q - \frac{2}{3} \mu_q \right) \nabla \cdot \vec{v}_q \vec{I},$$

μ_q и λ_q – коэффициенты вязкости q-й фазы, $\nabla \vec{v}_q$ – градиент векторов скорости q-й фазы. Уравнение движения (3) для жидкой фазы:

$$\frac{\partial}{\partial t} (\alpha_{q} \rho_{q} \vec{v}_{q}) + \nabla \cdot (\alpha_{q} \rho_{q} \vec{v}_{q}^{2}) = -\alpha_{q} \nabla p + \nabla \cdot \tau_{q} + \alpha_{q} \rho_{q} \vec{g} + \sum_{l=1}^{N} \left[k_{pq} (\vec{v}_{p} - \vec{v}_{q}) + (\dot{m}_{pq} \vec{v}_{pq} - \dot{m}_{qp} \vec{v}_{qp}) \right] + (\overline{F}_{q} + \overline{F}_{lift,q} + \overline{F}_{vm,q}),$$
(3)

 \vec{v}_{pq} – межфазная скорость, определяемая следующим образом. Если $m_{pq}>0$ (то есть масса p фазы переносится на q фазу) $\vec{v}_{pq} = \vec{v}_p$; если $m_{pq}<0$ (то есть масса q фазы переносится на p фазу) $\vec{v}_{pq} = \vec{v}_q$. Аналогично, если $m_{pq}>0$ тогда $\vec{v}_{qp} = \vec{v}_q$, если $m_{pq}<0$ тогда $\vec{v}_{qp} = \vec{v}_p$, k_{pq} – коэффициент межфазного взаимодействия.

При моделировании турбулентности течения используем модель турбулентности смеси. Уравнения для вычисления k- кинетической энергии турбулентности (4) и ε - скорости диссипации кинетической энергии (5):

$$\frac{\partial}{\partial t}(\rho_{m}k) + \nabla \cdot (\rho_{m}\vec{v}_{m}k) = \nabla \cdot \left(\left(\mu_{m} + \frac{\mu_{t,m}}{\sigma_{k}} \right) \nabla k \right) + G_{k,m} - \rho_{m}\varepsilon + \Pi_{K_{m}}, \quad (4)$$

$$\frac{\partial}{\partial t}(\rho_{\rm m}\varepsilon) + \nabla \cdot (\rho_{\rm m}\vec{v}_{\rm m}\varepsilon) = \nabla \cdot \left(\left(\mu_{\rm m} + \frac{\mu_{\rm t,m}}{\sigma_{\varepsilon}} \right) \nabla \varepsilon \right) + \frac{\varepsilon}{k} \left(C_{\rm 1\varepsilon}G_{\rm k,m} - C_{\rm 2\varepsilon}\rho_{\rm m}\varepsilon \right) + \Pi_{\varepsilon_{\rm m}}, \tag{5}$$

 $\rho_{\rm m}$ — плотность смеси, $\mu_{\rm m}$ — молекулярная вязкость, $\vec{v}_{\rm m}$ — скорость, которые вычисляются из формулы (6), модельные константы C₁ ϵ =1.44, C₂ ϵ =1.92, C μ =0.09, $\sigma_{\rm k}$ =1.0, σ_{ϵ} =1.3.

$$\rho_{\rm m} = \sum_{i=1}^{\rm N} \alpha_i \rho_i, \qquad \mu_{\rm m} = \sum_{i=1}^{\rm N} \alpha_i \mu_i, \qquad \vec{\rm v}_{\rm m} = \frac{\sum_{i=1}^{\rm N} \alpha_i \rho_i \vec{\rm v}_i}{\sum_{i=1}^{\rm N} \alpha_i \rho_i}, \qquad (6)$$

 $\alpha_i, \rho_i, \mu_i,$ и \vec{v}_i – объемная доля, плотность, вязкость и скорость *i*-й фазы соотвественно.

Турбулентная вязкость $\mu_{t,m}$ смеси вычисляется из формулы (7):

$$\mu_{t,m} = \rho_m C_\mu \frac{k^2}{\varepsilon}.$$
(7)

Производство кинетической энергии турбулентности G_{к,m} вычисляется из формулы (8):

$$G_{k,m} = \mu_{t,m} \left(\nabla \vec{v}_m + (\nabla \vec{v}_m)^T \right) : \nabla \vec{v}_m$$
(8)

В моделях турбулентности смеси включены параметры Π_{k_m} и Π_{ε_m} турбулентного взаимодействия между диспергированной фазой и непрерывной фазой модели Троско-Хасана [6]:

$$\Pi_{k_{m}} = C_{ke} \sum_{p=1}^{M} K_{pq} \left| \vec{U}_{p} - \vec{U}_{q} \right|^{2}$$
$$\Pi_{\varepsilon_{m}} = C_{td} \frac{1}{\tau_{p}} \Pi_{k_{m}}$$

 $C_{ke} = 0.75$, $C_{td} = 0.45 -$ коэффициенты модели, $\tau_p = \frac{2C_{VM}d_p}{3C_D \left| \vec{U}_p - \vec{U}_q \right|}$ – время индуцированной

турбулентности, C_{VM} – коэффициент виртуальной массы, C_D – коэффициент сопротивления.

Частицы имеют сферическую форму и равномерно распределены в суспензионной смеси. Уравнения сохранения массы, количества движения и энергии решаются методом

контрольного объема. Сходимость вычислительного процесса считается достигнутым и решение найденным, если на шаге дискретизации максимальное значение невязки будет меньше, чем 1.0Е-3 на весь контрольный объем в вычислительной области.

Рассмотрим стационарное двухфазное течение газа и твердых частиц в канале переменного сечения в двумерной постановке. Геометрия области течения состоит из сопла, как показано на рис.1. На входе в сопло подается смесь жидкости и твердых частиц под давлением.

Рис. 1. Размеры расчетной области

Основываясь на экспериментальных наблюдениях по двухфазному течению смеси газа и твердых частиц, сделаны следующие ограничения задачи.

1) Жидкость является сплошной средой и несжимаемой.

2) Двухфазное течение рассматривается как смесь, в которой вода является жидкой фазой, а твердые частицы равного диаметра составляют твердую фазу, но хорошо смешиваются с жидкой фазой.

3) Между двумя фазами нет массового переноса.

4) Двухфазное течение стационарно и обладает турбулентными характеристиками потока.

Компьютерное моделирование процесса двухфазного течения смеси газа и твердых частиц в канале переменного сечения проводим в системе инженерных расчетов Ansys Fluent 15.0 [7].

В соответствии со структурой характеристики сопла и течения область вычисления строим как осесимметричную модель. На рис. 2. и рис. 3. изображена область вычисления. Для построения сеточной модели расчётной области использовали структурированную сетку, состоящую из 26071 ячеек типа Quad – четырёхугольные элементы, которая позволяет получить более точные результаты.

Рис. 2. Сеточная модель Рис. 3. Границы области Задаем граничные условия в соответствии с расчетной областью и физическими свойствами процесса. Граничное условие на входе было определено как условие полного давления (pressure-inlet) Р=40 МПа. Определим дополнительные граничные условия турбулентности на входе: задаем масштаб турбулентности и гидравлический диаметр Turbulent Intensity=5%, Hydraulic diameter=0.004 м.

Граничное условие на выходе (pressure-outlet): статическое давление течения принимаем равным нулю, так что вычисление даст относительные перепады давления для всей области потока. Определим дополнительные граничные условия турбулентности на выходе: задаем масштаб турбулентности и гидравлический диаметр Turbulent Intensity=5%, Hydraulic diameter=0.0013 м.

В моделях вязкого течения на стенке компоненты скорости были установлены на ноль в соответствии с условиями отсутствия скольжения и герметичности. Одним из основных граничных условий при интегрировании является условие «прилипания», т.е. равенство нулю скорости жидкости на стенке.

При численном моделировании течения смеси газа и твердых частиц задаем две фазы, где вода рассматривается как несущая фаза – жидкая фаза I, а песок граната как твердые частицы – твердая фаза II. Входные параметры материалов двух фаз, используемые в анализе, приведены в табл. 1.

N⁰	Параметры	Значение
1	Объемная доля твердых частиц	5%, 10%, 15%
2	Плотность I фазы – жидкая фаза	998,2кг/м ³
3	Плотность II фазы – твердая фаза (песок граната)	2300 кг/м ³
4	Вязкость I фазы	0,001003 кг/(м.с)
5	Вязкость II фазы	1,7894е-05 кг/(м.с)
6	Размер частицы	0.1 мм

Таблица 1. Входные параметры материалов для моделирования

Результаты исследования. Результаты эксперимента, полученные G. Hu, W.Zhu, T.Yu J. Yuan в работе [8], использовались для подтверждения адекватности настоящей численной модели. График распределения скорости фазы I (жидкая фаза) вдоль сопла, полученный при численном моделировании, был сопоставлен с графиком, указанным в вышеназванной работе. Очевидно, что между двумя моделями существует согласованность относительно распределения скоростей, как показано на рис. 4–5. Следовательно,

построенная компьютерная модель адекватно описывает двухфазное течение смеси газа и твердых частиц в заданной расчетной области.

На рис. 6 видно распределение скорости двух фаз, где наблюдается отставание твердой фазы вслед за жидкой фазой, что является характерным для двухфазных течений.

Вычислительные эксперименты проводились с заданием полного давления на входе в диапазоне значений: от 5 MPa до 40 MPa. Как видно из рис. 7, чем выше рабочее давление, тем сильнее будет касательное напряжение на стенки. Это верно, потому что в сопле энергия давления преобразуется в кинетическую энергию и, следовательно, скорость увеличивается вдоль канала, что приводит к более высокому напряжению на стенки из-за более высоких градиентов скорости.

Для любого заданного входного рабочего давления касательное напряжение на стенки канала начинает увеличиваться в сходящейся секции сопла и достигает пика вблизи критического участка, что связано с внезапным изменением градиента скорости, соответствующего изменению площади в критическом сечении канала. Но касательное напряжение на стенки, по-видимому, достигает почти постоянной величины вдоль трубки фокусировки, поскольку нет значительного изменения скорости в трубке фокусировки из-за постоянного диаметра канала до выхода из сопла. Из рис. 7 очевидно, что градиенты скорости будут иметь небольшую неустойчивость при переходе от сходящейся части канала к прямому канальному участку сопла, это видно из шероховатых кривых распределения касательного напряжения вблизи критического участка.

На рис. 8 видно, что касательное напряжение на стенки сопла увеличивается в зависимости от увеличения объемной доли твердых частиц от 5 до 15% в смеси при подаче абразива, см. табл. 1. Очевидно, чем больше концентрация твердых частиц в смеси, тем больше касательное напряжение на стенки канала, что приводит к быстрому разрушению стенок и к износу соплового насадка.

Рис. 6. Распределение скорости двух фаз

Рис. 7. Зависимость входного давления и касательного напряжения

Это связано с тем, что из принципа сохранения энергии энергия рабочего давления на входе должна проявляться в виде пропорционального количества кинетической

энергии на выходе сопла с диссипацией вязкого сдвигового напряжения, которая также пропорциональна условиям рабочего давления на входе, которая показана на рис. 9.

Рис. 9. Динамическое давление двух фаз

Рис.8. Влияние объемной доли твердых частиц в смеси на касательное напряжение

Энергия, рассеиваемая из-за стенового сдвига, вычисляется из работы, выполняемой силами сдвига на поверхности сопла, абразивные частицы, движущиеся с течением, вызывают сильный сдвиг стенки, что вызывает эрозию. Это приводит к эрозии внутренней поверхности сопла, что создает уменьшение кинетической энергии струи и влияет на эффективность производительностии сопла.

Выводы. Проведено расчетное исследование процесса двухфазного течения смеси газа и твердых частиц в канале переменного сечения и тестирование k-є модели турбулентности для моделирования течения в канале переменного сечения.

В расчете использовалось моделирование двух фаз: жидкой и твердой на основе многофазной модели Эйлера. Выявлены закономерности влияния рабочего давления на входе и объемной доли твердой фазы на касательное напряжение на стенки канала.

Установлено, что для любого заданного входного рабочего давления касательное напряжение на стенки канала начинает увеличиваться в сходящейся секции сопла и достигает пика вблизи критического участка, что связано с внезапным изменением градиента скорости, соответствующего изменению площади в критическом сечении канала. В заключение можно сделать вывод, что увеличение объемной доли твердых частиц в смеси и рабочего давления на входе приводит к увеличению касательного напряжения на стенки канала, быстрому разрушению стенок и к износу сопла. Почти весь импульс осажденных конденсированных частиц уничтожается трением, и вклад в импульс смеси от движения пристеночного слоя твердых частиц пренебрежимо мал.

Литература

1. Гарбарук, А.В. Моделирование турбулентности в расчетах сложных течений [Текст] / А.В. Гарбарук, Х.М. Стрелец, Л.М. Шур. – СПб.: Изд-во политехн. унта, 2012. – 88 с.

- 2. Юн, А.А. Теория и практика моделирования турбулентных течений [Текст] / А.А. Юн. М.: ЛИБРОКОМ, 2009. 272 с.
- CFD Training Manual [Электронный ресурс]. Режим доступа: <u>http://www.engr.uconn.edu/~barbertj/CFD%20Training/UConn%20Modules/CFD%2</u> <u>0Training%20Manual.docx</u>. – Загл.с экрана. (Дата обращения 07.02.2017).
- Cornell University. FLUENT Learning Modules [Электронный ресурс]. Режим доступа: <u>https://confluence.cornell.edu/dis-play/SIMULATION/FLUENT+Learning+Modules</u>4/10/11. Загл.с экрана. (Дата обращения 07.02.2018).
- 5. Басов, К.А. ANSYS Справочник пользователя [Текст] / К.А. Басов. М.: Книга по требованию, 2005. 640 с.
- 6. Каплун, А. Б. ANSYS в руках инженера [Текст]: практ. руководство / А.Б. Каплун, Е.М. Морозов, М.А. Олферьева. М.: Либроком, 2015. 272 с.
- САЕ-система ANSYS [Электронный ресурс]. Режим доступа: <u>http://www.ansys.com</u>. – Загл.с экрана. (Дата обращения 10.08.2017).
- "Numerical Simulation and Experimental Study of Liquid-solid Two-phase Flow in Nozzle of DIA Jet [Text]: proceedings of the IEEE International conference industrial informatics(INDIN 2008), Daejeon, Korea, July 13-16th 2008 / G. Hu, W. Zhu, T. Yu, J. Yuan //<u>Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques</u>. – Daejeon, 2008. – P. 92-100.