УДК 631.6. (575.2)

Пресняков К. А., д.т.н., с.н.с.

Керимкулова Г.К., к.ф.-м.н., gulsaat@mail.ru

Аскалиева Г. О., к.т.н., <u>87guzya@mail.ru</u>

Институт машиноведения и автоматики НАН КР, Бишкек, Кыргызстан

ПУЛЬСАЦИИ ДИНАМИЧЕСКОГО ДАВЛЕНИЯ В ОТКРЫТОМ ТУРБУЛЕНТНОМ ПОТОКЕ ВОДЫ

Установлена формула для распределения пульсаций гидродинамического давления по глубине потока воды: значения указанных пульсаций уменьшаются с уменьшением относительной вертикальной координаты. Показано, что пульсации гидродинамического давления оказывают достаточно слабое возможное влияние их на площадку размером 1м² в придонной части потока.

Ключевые слова: открытый турбулентный поток воды, усредненная скорость воды и ее пульсации, динамическое давление и его пульсации.

Введение. Как известно, турбулентному потоку воды присуще упорядоченное его движение, описываемое полем осредненных компонент его скорости [1]. Наличие в рассматриваемом объекте инерционных сил [2] способствует возникновению динамического давления. Оба указанных поля взаимосвязаны друг с другом.

Постановка задачи исследования. Поле осредненных скоростей турбулентного потока воды сопровождается возникновением поля его пульсаций [3]. Логично, что динамическое давление в потоке воды также не отрицает существование в нем поля его пульсаций. Указанные поля пульсаций скорости и динамического давления должны быть связаны друг с другом.

Задачи исследований. Найти выражения для поля пульсаций динамического давления (распределение пульсаций динамического давления по глубине потока) с целью выявления возможного влияния указанных пульсаций на границы открытого турбулентного потока воды и на отдельные элементы гидротехнических сооружений.

Решение поставленных задач. В случае прямолинейного (отсутствие поперечных течений) плоскопараллельного потока воды запишем выражение для динамического давления:

$$P_{\pi} = \rho \left(u^2 + v^2 \right), \tag{1}$$

где P_{μ} – динамическое давление, Па; u, v – продольная и вертикальная компоненты скорости воды соответственно, м/c; ρ – плотность воды, кг/м³.

Введем в формулу (1) пульсации соответствующих величин

$$P_{x,i} \pm P'_{x} = \rho \left[(u_i \pm u')^2 + (v_i \pm v')^2 \right], \tag{2}$$

где $P_{\text{д},i}$, u_{i} , v_{i} – текущие значения соответствующих величин; $P_{\text{д}}'$, u', v' – пульсации соответствующих величин.

Раскроем круглые скобки правой части уравнения (2)

$$P_{\mu,i} \pm P'_{\mu} = \rho \left[u_i^2 \pm 2 \cdot u_i \cdot u' + u'^2 + v_i^2 \pm 2 \cdot v_i \cdot v' + v'^2 \right]. \tag{3}$$

Учтем, что $P_{\text{\tiny д,i}}$ равняется $\rho \cdot \left(u_{_{i}}^{^{2}} + v_{_{i}}^{^{2}} \right)$. Тогда $\pm P_{_{\pi}}'$ будет равно

$$\rho \left[\pm 2 \cdot u_{i} \cdot u' + u'^{2} \pm 2 \cdot v_{i} \cdot v' + v'^{2} \right]. \tag{4}$$

Разделим обе части уравнения (4) на (± 1) . Будем иметь

$$P'_{\pi} = \rho \cdot (2 \cdot u_{i} \cdot u' \pm u'^{2} + 2 \cdot v_{i} \cdot v' \pm v'^{2}). \tag{5}$$

В связи с тем, что вертикальной компоненте скорости и ее пульсации присущ один и тот же порядок, имеет место приближенное равенство $v(\widetilde{y}) \approx v'(\widetilde{y})\,.$

Следовательно, получим

$$P'_{x} = \rho \cdot (2 \cdot u_{i} \cdot u' \pm u'^{2} + 2 \cdot v'^{2} \pm v'^{2}). \tag{6}$$

Рассмотрим два последних члена правой части уравнения (6). В случае знака «минус» второй член $2 \cdot {v'}^2 \pm {v'}^2 = {v'}^2$. А в случае знака «плюс» во втором члене $2 \cdot {v'}^2 \pm {v'}^2 = 3{v'}^2$.

Среднее значение рассматриваемой величины будет равно $2 \cdot v'^2 \pm v'^2 = 2v'^2$. Тогда получим

$$P'_{\pi} = \rho \cdot (2 \cdot u_{i} \cdot u' \pm u'^{2} + 2 \cdot v'^{2}). \tag{7}$$

Рассмотрим первые два члена правой части уравнения. В случае знака «минус» во втором члене $2 \cdot u_i \cdot u' \pm u'^2 = 2 \cdot u_i \cdot u' - u'^2$. И в случае знака «плюс» во втором члене $2 \cdot u_i \cdot u' \pm u'^2 = 2 \cdot u_i \cdot u' + u'^2$. Сумма этих выражений будет равна $2 \cdot u_i \cdot u' - u'^2 + 2 \cdot u_i \cdot u' + u'^2 = 4 \cdot u_i \cdot u'$.

Среднее значение составляет $2 \cdot u_i \cdot u'$.

Перепишем уравнение (7), получим

$$P'_{\pi} = 2 \cdot \rho \cdot \left(u_i \cdot u' + v'^2 \right). \tag{8}$$

Для проведения дальнейших преобразований формулы (8) используем следующие соотношения:

$$u' = 2,10 \cdot u_* \cdot \phi(\widetilde{y}), \ v' = 1,05 \cdot u_* \cdot \psi(\widetilde{y}), [4, c.108, \phi.44 \text{ и } \phi.46]$$
 (9)

где u_* – динамическая скорость потока воды, м/c; $\phi(\widetilde{y})$, $\psi(\widetilde{y})$ – координатные части выражений для распределения пульсаций продольной компоненты скорости воды.

Кроме того, для конкретности нашего анализа используем в качестве профиля продольной компоненты скорости воды показательный закон $\,u_i = u_{_{_{M}}} \cdot \widetilde{y}^{_{1/m}}\,.$

После простейших преобразований (опущены) получим

$$\mathbf{P}_{\mathbf{x}}' = 2 \cdot \rho \cdot \mathbf{u}_{*}^{2} \cdot \left(2,10 \cdot \frac{\mathbf{u}_{\mathbf{M}}}{\mathbf{u}_{*}} \cdot \widetilde{\mathbf{y}}^{1/\mathbf{m}} \cdot \phi(\widetilde{\mathbf{y}}) + 1,05^{2} \cdot \psi^{2}(\widetilde{\mathbf{y}}) \right). \tag{10}$$

Теперь обезразмерим обе части равенства (10).

Для этого разделим их на величину нормального давления

 P_0 =101 345 $\Pi a = 1,01 \cdot 10^5 \, \Pi a$ (учтено, что стандарта пульсаций динамического давления не существует).

$$\widetilde{\mathbf{P}}_{\mathbf{g}}' = \frac{2 \cdot \rho \cdot \mathbf{u}_{*}^{2}}{1,01 \cdot 10^{5}} \cdot \left[2,10 \cdot \frac{\mathbf{u}_{\mathbf{m}}}{\mathbf{u}_{*}} \cdot \widetilde{\mathbf{y}}^{1/\mathbf{m}} \cdot \phi(\widetilde{\mathbf{y}}) + 1,05^{2} \cdot \psi^{2}(\widetilde{\mathbf{y}}) \right]. \tag{11}$$

Выражение (11) перепишем в другом виде

$$\widetilde{P}'_{\pi} = A \cdot \left(B \cdot \widetilde{y}^{1/m} \cdot \phi(\widetilde{y}) + 1,05^{2} \cdot \psi^{2}(\widetilde{y})\right), \tag{12}$$

где
$$A = \frac{2 \cdot 10^3}{1,01 \cdot 10^5} \cdot u_*^2$$
; $B = 2,10 \cdot \frac{u_{_M}}{u_*}$.

Для проверки легитимности уравнения (12) определим размерность коэффициента A

$$[A] = \frac{[\rho] \cdot [u_*^2]}{[P_0]} = \frac{M \cdot L^{-3} \cdot L^2 \cdot T^{-2}}{M \cdot L \cdot T^{-2} \cdot L^{-2}} = \frac{M \cdot L^{-1} \cdot T^{-2}}{M \cdot L^{-1} \cdot T^{-2}} = 1;$$
(13)

т.е. показана безразмерность коэффициента А и тем самым безразмерность в целом уравнения (12).

Для пользования уравнением (12) необходимо составить таблицу исходных характеристик, относящихся к рассматриваемым объектам (таблица) [4].

Наш анализ проведем с использованием эмпирических данных по ПК р. Тору-Айгыр, каналу Туш и каналу Меркенскому (таблица) [5].

Результаты расчетов пульсаций динамического давления осуществлены с использованием формулы (12) и приведены на рисунке.

•		11'	,			1	
	u _M .	u*,	$\widetilde{\Delta}$	m	1/m	A	В
Объект	м/с	м/с					
{8;10} ПК р. Тору-Айгыр	1,57	0,275	0,0571	4	0,25	0,0015	11,99
3 канал Туш	6,43	0,219	0,020	7	0,14	0,00095	61,66
13 канал Туш	8,20	0,237	0,018	9	0,11	0,0011	72,66
15 канал Туш	3,86	0,188	0,024	6	0,17	0,0007	43,12
25 канал Туш	3,72	0,188	0,020	6	0,17	0,0007	41,55
38 канал Туш	3,82	0,188	0,018	6	0,17	0,0007	42,67
б канал Меркенский	5,80	0,410	0,009	6	0,17	0,0033	29,71
В канал Меркенский	3,94	0,260	0,010	6	0,17	0,0013	31,82

Таблица. Значения коэффициентов А, В для рассматриваемых опытов

Обсуждение результатов исследований. Все установленные кривые являются однотипными: они показывают уменьшение пульсаций динамического давления с уменьшением вертикальной координаты, причем разброс эмпирических точек выявляется в придонной части потока воды (при $\tilde{y} \le 0.2$).

Минимальные значения $\widetilde{P}'_{_{\! /}}$ выявлены в придонной части потока при $\widetilde{y} \leq 0{,}02$, при этом сами значения $\widetilde{P}'_{_{\! /}}(*)$ соответствуют третьему знаку после запятой. Максимальные

Сила, обусловленная минимальными пульсациями гидродинамического давления, равна

$$F_{P_{\pi}} = P'_{\pi} \cdot S = \widetilde{P}'_{\pi} \cdot P_{0} \cdot S \approx 10^{-2} \cdot 1,01 \cdot 10^{5} \,\Pi a \cdot S \approx 1 \cdot 10^{3} \,\Pi a \cdot S. \tag{14}$$

Для площадки размером в 1m^2 искомая сила будет равна

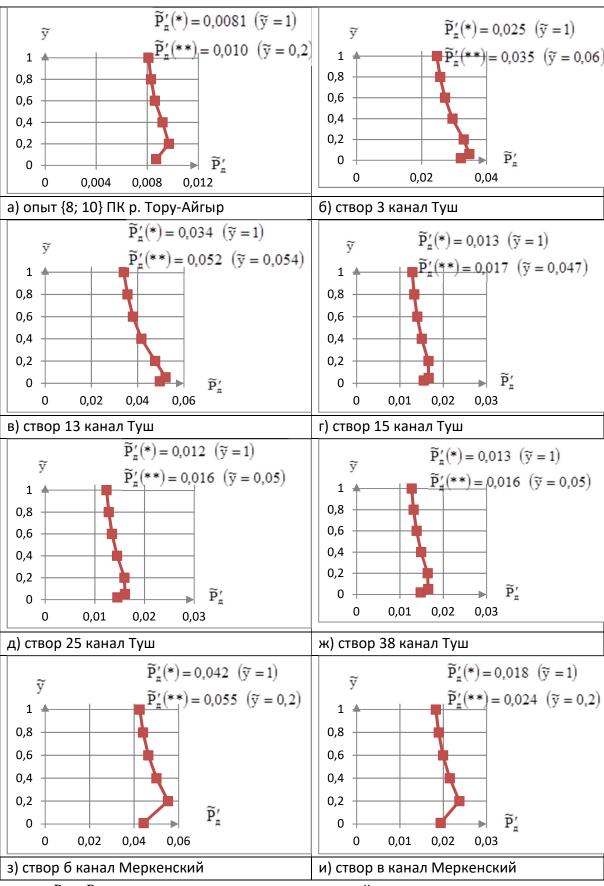


Рис. Распределение относительных пульсаций динамического давления воды. Условные обозначения: 1) в скобках указаны значения относительной координаты,

соответствующие значениям пульсаций динамического давления; 2) * и ** – минимальные и максимальные значения \widetilde{P}'_{π} .

Эта предварительная оценка показывает достаточно слабое возможное влияние пульсаций динамического давления на площадку размером $1 \, \mathrm{m}^2$, расположенную в придонной части потока воды.

Заключение. Получена формула для распределения пульсаций гидродинамического давления по глубине потока с максимальными ее значениями близи поверхности и минимальными — в придонной части потока воды. Предварительная оценка возможного влияния пульсаций гидродинамического давления на площадку размером 1 м^2 в придонной части потока воды показала достаточно малую степень его.

Литература

- 1. Чугаев Р.Р. Гидравлика. Л.: Энергия (Лен.отделение), 1976.
- 2. Великанов М.А. Динамика русловых потоков. Т.1 Структура потока. М.: Госиздат техн.-теор. лит., 1954. –323 с.
- 3. Никитин И.К. Турбулентный русловой поток и процессы в придонной области. Киев: Изд-во АН УССР, 1963. –138с.
- 4. Аскалиева Г.О., Пресняков К.А, Керимкулова Г.К. Модель и алгоритмы идентификации параметров открытых водотоков. LAP LAMBERT, 2019 г. 177с.
- 5. Пресняков К.А., Керимкулова Г.К. Установление средне-интегрального профиля скорости воды частично изученного открытого водотока на основе реконструкции эмпирических данных // Проблемы автоматики и управления. –2012. №2(23) С. 47–56.