10.5281/zenodo.3594795

К.М.Акишев¹, К.Ш.Арынгазин, ², В.И.Карпов³

- 1. Павлодарский государственый университет им. Торайгырова,
- 2. ТОО «Экостройнии-ПВ», Казахстан,
- 3. Московский государственный университет технологии и управления им.К.Г.Разумовского

ПРИМЕНЕНИЕМЕТОДОВ КЛАСТЕРНОГОАНАЛИЗА ДЛЯ СТАТИСТИЧЕСКОЙ ОЦЕНКИ КАЧЕСТВА МЕТАЛЛУРГИЧЕСКОГО ШЛАКА ПАВЛОДАРСКОГО ФИЛИАЛА ТОО «КАСТИНГ»

В Павлодарской области со времен СССР существуют металлургические предприятия, ежедневно производящие сотни тонн металлургических отходов, окалины, футеровочной обшивки и т.д. В настоящее время для улучшения экологической обстановки находят все большее распространение ресурсосберегающие технологии, в которых в качестве сырьевых компонентов возможно использование техногенных отходов или продуктов их переработки, что в условиях промышленного производства дает существенный экономический и ресурсосберегающий эффекты. В статье рассмотрены применение методов кластерного анализа для статистической оценки качества металлургического шлака ПФ ТОО «Кастинг», с использованием программного продукта «Комплексная оценка качества и классификация многомерных объектов» на основе методов Уорда, Тамуры С, Евклидова расстояния. В результате применения программного продукта «Комплексная оценка качества и классификация многомерных объектов» пробы металлургического шлака, отобранные с разных точек шлакохранилища, были разделены на кластеры и получена оценка качества металлургического шлака для дальнейшего использования в строительных материалах. Нами были разработаны эффективные рецептуры тяжелых бетонных смесей с использованием металлургических отходов ПФ ТОО «Кастинг», соответствующие требованиям ГОСТ25192-2012.

Ключевые слова: системный анализ, методы кластерного анализа, показатели качества металлургического шлака, статистическая оценка, многомерный объект исследования, статистические методы.

1. Введение. Проблема утилизации техногенных отходов остро стоит во всем мире. Техногенное сырье конкурентно-способный, перспективный минеральный ресурс, использование которого по инновационным технологиям обеспечивает не только значительный техно-экономический эффект, но и экологический эффект, как следствие нового уровня требований производства.

В работах [1,2,3] описаны возможности применения и переработки шлаков. В работе [4] упомянуто использование новых методов переработки. Работа [5] посвящена описанию использованию гранулированных шлаков в строительных материалах.

Зарубежный опыт свидетельствует об эффективной замене значительной части вяжущих составляющих, техногенными отходами [6,7] Промышленность строительных материалов оказывает существенное воздействие на окружающую среду, которое определяется колоссальными объемами производства материалов для строительства. В настоящее время для улучшения экологической обстановки находят все большее распространение ресурсосберегающие технологии, в которых в качестве сырьевых компонентов возможно использование техногенных отходов или продуктов их переработки, что в условиях промышленного производства дает существенный экономический и ресурсосберегающий эффекты.

Город Павлодар относится к промышленным городам, на экологию которого

огромное воздействие, в числе прочих, оказывают металлургические предприятия, расположенные практически в черте города. Металлургические производства образует большое количество твердых и жидких отходов, часть из которых утилизируется, а большая часть складируется в отвалах, шламо- и хвостохранилищах, накопителях. Использование металлургических отходов в качестве вторичного сырья становится особенно актуальным, особенно в строительной и других отраслях, что позволит решить проблемы утилизации техногенных отходов, улучшить экологическую обстановку в Павлодарском регионе, создать новые строительные материалы, новые производства, за счет этого, решить экономические и социальные проблемы в Павлодарском регионе.

ПФ ТОО «Кастинг» металлургическое предприятие занимающееся производством продукции проката из скраба (металлургический лом). ПФ ТОО «Кастинг», как и другие металлургические предприятия Павлодарской области ежегодно отправляет в шлакоотвалы сотни тонн техногенного отхода металлургического шлака. В рамках Подпроекта№APP-SSG-17/0290Р «Инновационные технологии использования твердых техногенных отходов предприятий теплоэнергетики и металлургии Павлодарской области в производстве строительных материалов», финансируемого в рамках Проекта «Стимулирование продуктивных инноваций», поддерживаемого Всемирным Банком и Правительством Республики Казахстан были выполнены исследования шлакоотвалов предприятия.

Цели исследования. Целью исследования является возможность использования металлургических отходов ПФ ТОО «Кастинг» для производства строительных материалов, с последующей разработкой рецептур бетонных смесей для производства строительных изделий. С шлакоотвалов ПФ ТОО «Кастинг» были сделаны контрольные пробы образцов металлургических шлаков в различных точках шлакоотвалов для определения модуля основности *Мосн* и коэффициента качества K, оценки качества техногенного отхода металлургического шлака.

Материалы и методы исследования. Для всех проб был выполнен анализ химического состава металлургического шлака.Полученные данные химического состава, номеров шлакоотвала, номера контрольных точек, оборудование с которого получен шлак с шлакоотвалов ПФ ТОО «Кастинг»были внесены в таблицу 1.

Таблица1. Данные пробы металлургичес	ского шлака ПФ ТОО «Кастинг» с различ-
ных точек шлакового отвала.	

<u>№ Но-</u> Номер Кон- Номер			НД				Химиче	ский сос	тав,%				Приме- чание	
п/	мершл ко- отвала	троль- ной точки	пробы (плавки)	нама- териал	Fe _{об}	SiO ₂	Al ₂ O ₃	CaO	MgO	MnO	S	осн	Σ	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1811	6945	292751	отс	3,9	24,9	0,5	46	9,2	4,0	0,4	1,8	90,0	АКП-1
2	1811	6946	292752	отс	5,4	23,9	0,7	49	7,2	3,2	1,2	2,1	90,7	АКП-1
3	1811	6947	292753	отс	3,7	26,5	0,6	50	9,2	3,9	0,8	1,9	94,9	АКП-1
4	1811	6948	292754	отс	4,9	27,1	0,6	50	6,8	2,9	0,8	1,9	93,9	АКП-1
5	1811	6949	292755	отс	4,8	23,4	0,6	47	7,4	4,0	0,9	2,0	88,8	АКП-1
6	1812	6950	393085	отс	1,7	27,4	0,6	51	6,6	2,4	0,8	1,9	90,5	АКП-2
7	1812	6951	393086	отс	2,0	27,6	0,6	51	6,8	2,7	0,7	1,9	91,9	АКП-2
8	1812	6952	393087	отс	1,4	27,8	0,5	52	6,2	1,9	1,0	1,9	91,4	АКП-2
9	1812	6953	393088	отс	5,7	26,1	0,4	49	9,6	3,8	0,5	1,9	95,3	АКП-2
10	1812	6954	694669	отс	3,1	26,8	0,6	52	6,8	2,5	1,0	2,0	93,1	АКП-2

Проблемы автоматики и управления. 2019, №2 (37)

11	1814	6963	292761	отс	0,8	25,4	1,0	55	6,2	1,8	1,0	2,2	91,2	АКП-1
12	1814	6964	292762	отс	0,3	24,0	0,4	56	6,6	0,9	1,0	2,3	89,4	АКП-1
13	1814	6965	292763	отс	0,3	26,2	0,5	58	6,9	0,9	1,2	2,2	94,6	АКП-1
14	1814	6966	292764	отс	0,7	25,8	0,4	55	7,8	3,1	0,5	2,2	93,8	АКП-1
15	1814	6967	292765	отс	0,3	24,4	0,3	56	7,1	1,3	0,8	2,3	90,9	АКП-1
16	1815	6968	393093	отс	1,5	25,4	0,6	54	6,8	2,8	0,4	2,1	91,9	АКП-2
17	1815	6969	393094	отс	1,3	27,2	0,7	52	6,8	2,5	0,4	1,9	91,6	АКП-2
18	1815	6970	393095	отс	1,4	27,1	0,7	54	7,1	2,7	0,4	2,0	93,5	АКП-2
19	1815	6971	393096	отс	0,4	25,9	0,4	53	6,3	1,1	1,0	2,1	88,4	АКП-2
20	1815	6972	393097	отс	0,5	27,8	0,5	54	6,3	1,0	1,1	2,0	91,9	АКП-2
21	1807	6989	292770	отс	0,6	26,0	0,5	58	7,0	1,6	1,0	2,2	94,9	АКП-1
22	1807	6990	292771	отс	0,4	27,2	0,6	59	6,8	1,1	1,2	2,2	96,8	АКП-1
23	1807	6991	292772	отс	0,5	29,4	0,8	52	7,6	1,5	1,0	1,8	93,2	АКП-1
24	1807	6992	292773	отс	0,2	29,0	0,4	53	6,9	1,5	0,8	1,8	92,1	АКП-1
25	1807	6993	292774	отс	0,3	30,2	0,6	53	7,5	1,5	1,0	1,8	94,3	АКП-1
26	1808	6994	393103	отс	1,6	27,6	0,6	54	6,7	3,1	0,7	2,0	94,1	АКП2
27	1808	6995	393104	отс	1,6	27,2	0,7	53	6,7	3,1	0,4	2,0	92,9	АКП-2
28	1808	6996	393105	отс	2,3	28,8	0,4	53	6,8	5,1	0,6	1,8	97,1	АКП-2
29	1808	6997	393106	отс	1,2	27,3	0,6	57	6,3	1,7	0,7	2,1	94,8	АКП-2
30	1808	6998	393107	отс	0,3	26,6	0,5	59	6,6	1,0	1,2	2,2	95,8	АКП-2

Для обработки данных таблицы 1 применены методы кластерного анализа для оценки качества металлургического шлака.

Разработка технологических систем производства с использованием техногенных отходов металлургии ставит требования, предъявляемые к учету качества исходного сырья, а контроль, оценка и настройка параметров его обработки значительно повышает эффективность технологических систем. В связи с отсутствием каких-либо данных по модулю основности *Мк* и коэффициенту качества *К* металлургического шлака ПФ ТОО «Кастинг», для определения типовых кластеров металлургического шлака (техногенного отхода) применены методы мягких вычислений (метода кластеризации многомерных объектов)[1]. В настоящее время используется достаточно большое количество методов статистической оценки качества. В нашем исследовании мы проводили оценку с использованием программного продукта «Комплексная оценка качества и классификация многомерных объектов» используя методы Уорда, Тамуры С, Евклидово расстояние, нами были изучены работы по методам кластерного анализа и использованию методов кластерного анализа в различных сферах применения[8,9,10].

Задача кластеризации рассматривается, как задача классификации многомерных объектов. Для нашей задачи исходное множество объектов (номер контрольной точки) рассматривается в виде множества многомерных объектов S:

$$S = \{S_n\}, \quad n = \overline{1, N}, \tag{1}$$

где $S_n - n$ -ый объект; n – номер объекта(пробы); N – количество объектов (номеров контрольных точек).

Характеристики объектов представлены в виде матрицы характеристик X, именуемой также матрицей «объект-свойство»:

$$S_n = \{ X_{nm} \}, \quad X = \parallel X_{nm} \parallel, \quad m = \overline{1, M},$$
 (2)

где $X_{nm} - m$ -ая характеристика n-ого объекта; X — матрица характеристик заданного множества объектов; m — номер характеристики; M — общее количество характеристик.

Задача кластеризации заключается в разбиении исходной совокупности объектов S (номеров контрольных точек) на заранее неизвестное множество однородных классов C_o т.о., чтобы объекты каждого класса были в определенном смысле сходны между собой, а сами классы объектов отличались бы друг от друга, так что отыскивается своего рода «естественное» расслоение исходного множества объектов на классы:

$$C_o = \{ C_k \}, \quad k = \overline{1, K_o}, \quad C_k = \{ S_n \}, \quad n = \overline{1, N_k},$$
 (3)

$$S = \bigcup_{k=1}^{K_o} C_k, \quad \forall C_k \in C_o, \quad \forall C_l \in C_o: C_k \cap C_l = \emptyset,$$

$$k = \overline{1, K_o}, \quad l = \overline{1, K_o}, \quad k \neq l.$$
(4)

где C_k — множество объектов k-го класса; k — номер класса; K_o — оптимальное количество классов объектов; N_k — количество объектов k-го класса

Для разбиения исходной совокупности объектов на оптимальное количество классов, т.е. определения оптимальной кластеризации, на каждом ее шаге проводится расчет критерия качества кластеризации, принимающего максимальное значение при оптимальной кластеризации:

$$U(K_o) = \max_{K = \overline{N,2}} \{(U_1(K) - U_2(K))\},$$
 (5)

где $U(K_o)$ — оптимальное значение критерия качества кластеризации; $U_I(K)$ — компактность классов; $U_2(K)$ — мера близости классов. Мера сходства между двумя объектами (контрольными точками) определяется на основании потенциальной функции $f(S_i, S_j)$:

$$f(S_i, S_j) = \frac{1}{1 + \rho^2(S_i, S_j)},$$

$$\rho(S_i, S_j) = \sqrt{\sum_{m=1}^{M} (X_{im} - X_{jm})^2},$$
(6)

где $f(S_i, S_j)$ — потенциальная функция объектов $S_i \in S$ и $S_j \in S$; $\rho(S_i, S_j)$ — евклидово расстояние между объектами S_i и S_j в пространстве характеристик X.

Для решения задачи кластеризации, также можно использовать методы средней связи и Уорда, описываются следующими выражениями:

для метода средней связи:

$$F_p(C_i, C_j) = \max_{k = \overline{l, K}} \max_{l = \overline{l, K}} \{F(C_k, C_l)\}, \quad k \neq l, \quad K = \overline{N, 2},$$
(7)

где $F_p(C_i, C_j)$ — максимальная мера близости двух классов объектов C_i и C_j , объединяемых в один класс на шаге p; K — количество классов объектов на шаге p;

для метода Уорда:

$$V_{p}(C_{i}, C_{j}) = \min_{k = \overline{1, K}} \min_{l = \overline{1, K}} \{V(C_{k}, C_{l})\}, \quad k \neq l, \quad K = \overline{N, 2},$$

$$V(C_{k}, C_{l}) = \sum_{S_{i} \in S_{kl}} \sum_{m=1}^{M} (X_{S_{i}m} - \overline{X}_{mS_{kl}})^{2}, S_{kl} = C_{k} \bigcup C_{l},$$
(8)

где $V_p(C_i, C_j)$ – минимальная сумма квадратов отклонения для двух классов объектов; C_i и C_j , объединяемых в один класс на шаге p; $V(C_k, C_l)$ – сумма квадратов отклонения для двух объединяющихся классов объектов C_k и C_l ; X_{S_jm} – значение m-ой характеристики

 S_i -ого объекта; $\overline{X}_m S_{kl}$ — среднее значение m-ой характеристики в множестве S_{kl} ; S_{kl} — множество объектов, получаемое в результате объединения классов C_k и C_l ; K — количество классов объектов на шаге p.

На каждом шаге кластеризации для определения оптимального значения критерия качества кластеризации производится расчет компактности классов $U_I(K)$ и меры близости классов $U_2(K)$:

$$U_1(K) = \frac{1}{K} \sum_{k=1}^{K} \frac{2}{N_k(N_k - 1)} \sum_{S_i \in C_k} \sum_{S_j \in C_k} f(S_i, S_j), \quad i \neq j,$$
 (9)

где K — количество классов на текущем шаге кластеризации; C_k — k-ый класс объектов; N_k — количество объектов в классе C_k ; $f(S_i, S_i)$ — потенциальная функция объектов S_i и S_i .

$$U_2(K) = \frac{2}{K(K-1)} \sum_{C_k \in C_p} \sum_{C_l \in C_p} F(C_k, C_l) , \quad k \neq l ,$$
 (10)

где C_p — множество классов объектов на текущем шаге кластеризации; $F(C_k, C_l)$ — мера близости двух классов C_k и C_l .

Возможно использование метода кластеризации, предложенного Тамурой С., Хигути С. и Танакой К. Однако, стоит отметить, что результаты, полученные с помощью данного алгоритма, могут быть искажены в силу того, что применяемая в алгоритме операция (тах-тіп)-транзитивного замыкания в некоторой степени изменяет геометрическую структуру исследуемой совокупности объектов. Исходя из этого, данный алгоритм можно рекомендовать только в качестве инструмента предварительного анализа исследуемой совокупности объектов.

С целью получения более качественных результатов обработке подвергались столбцы с номерами 6-13 таблицы 1, в нашем случае метрика будет состоять из 8 элементов. За основной критерий принимались модуль основности *Мосн* проб, который влияет на гидравлическую активность металлургического шлака. При этом считалось, что все характеристики метрики одинаково важными, при этом Mp(i)=1/8=0.125 для любого i.

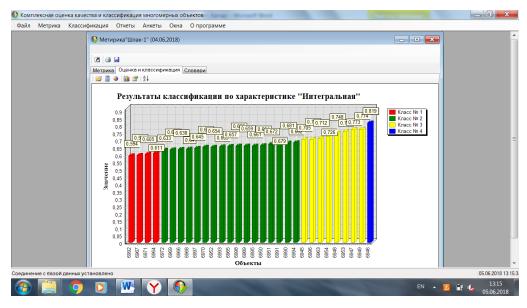


Рисунок 1 – Результаты кластеризации по интегральному критерию

Данные Таблицы 1 были обработаны с применением программного продукта «Комплексная оценка качества и классификация многомерных объектов» [11].

Как мы видим из (рис.1), в результате все объекты распределены на четыре кластера. Из файла «Результаты кластеризации» программного продукта «Комплексная оценка качества и классификация многомерных объектов», разработанного на применении различных методов кластерного анализа, формируется таблица 2 (описание работы программного продукта в данной статье не рассматривается).

Таблица 2. Распределение объектов по кластерам.

№	Объекты	Класс 1	Класс 2	Класс 3	Класс 4
1	6992	0,59			
2	6967	0,60			
3	6971	0,61			
4	6964	0,61			
5	6972		0,63		
6	6969		0,63		
7	6966		0,64		
8	6968		0,64		
9	6997		0,64		
10	6970		0,65		
11	6952		0,65		
12	6993		0,65		
13	6965		0,66		
14	6998		0,66		
15	6989		0,66		
16	6995		0,66		
17	6950		0,66		
18	6951		0,67		
19	6991		0,68		
20	6990		0,68		
21	6994		0,68		
22	6945			0,70	
23	6996			0,71	
24	6963			0,71	
25	6954			0,73	
26	6948			0,75	
27	6953			0,76	
28	6947			0,77	
29	6949			0,77	
30	6946				0,82

В колонках класс1, класс2, класс3, класс4 для каждого объекта представлены интегральные оценки.

Анализ результатов исследования. В результате работы программного продукта «Комплексная оценка качества и классификация многомерных объектов» были сформированы кластеры. Для каждого кластера (см. таблицы 2, 3, 4) получены средние, максимальные, минимальные и среднеквадратические оценки отклонения значения показателей.

Таблица 2 – Оценки показателей объектов первого кластера

Имя объекта	Геоб	SiO ₂	Al ₂ O ₃	CaO	MgO	MnO	S	осн
6992	0,2	29	0,4	53	6,9	1,5	0,8	1,8
6967	0,3	24,4	0,3	56	7,1	1,3	0,8	2,3
6971	0,4	25,9	0,4	53	6,3	1,1	1	2,1
6964	0,3	24	0,4	56	6,6	0,9	1	2,3
Среднее	0,3	25,8	0,4	54	6,7	1,2	0,9	2,1
MAX	0,4	29	0,4	56	7,1	1,5	0,9	2,3
MIN	0,2	24	0,3	53	6,3	0,9	0,8	1,8
СКО	0,08	2,27	0,05	1,83	0,30	0,26	0,12	0,24

Таблица 3 – Оценки показателей объектов третьего кластера

Имя объекта	Геоб	SiO_2	Al ₂ 0 ₃	CaO	MgO	MnO	S	осн
6945	3,9	24,9	0,5	46	9,2	4	0,4	1,8
6996	2,3	28,8	0,4	53	6,8	5,1	0,6	1,8
6963	0,3	30,2	0,6	53	7,5	1,5	1	1,8
6954	3,1	26,8	0,6	52	6,8	2,5	1	2
6948	4,9	27,1	0,6	50	6,8	2,9	0,8	1,9
6953	5,7	26,1	0,4	49	9,6	3,8	0,5	1,9
6947	3,7	26,5	0,6	50	9,2	3,9	0,8	1,9
6949	4,8	23,4	0,6	47	7,4	4	0,9	2
Среднее	3,59	26,73	0,54	50	7,91	3,46	0,75	1,89
MAX	5,7	30,2	0,6	50	9,6	5,1	0,9	2
MIN	0,3	23,4	0,4	47	7,4	1,5	0,4	1,8
СКО	1,71	2,12	0,09	2,64	1,21	1,60	0,23	0,08

Таблица 4 – Оценки показателей объектов второго кластера

имя объекта	Геоб	SiO ₂	Al ₂ O ₃	CaO	MgO	MnO	S	осн
6972	0,5	27,8	0,5	54	6,3	1	1,1	2
6969	1,3	27,2	0,7	52	6,8	2,5	0,4	1,9
6966	0,7	25,8	0,4	55	7,8	3,1	0,5	2,2
6968	1,5	25,4	0,6	54	6,8	2,8	0,4	2,1
6997	1,2	27,3	0,6	57	6,3	1,7	0,7	2,1
6970	1,4	27,1	0,7	54	7,1	2,7	0,4	2

Проблемы автоматики и управления. 2019, №2 (37)

6952	1,4	27,8	0,5	52	6,2	1,9	1	1,9
6993	0,3	30,2	0,6	53	7,5	1,5	1	1,8
6965	0,3	26,2	0,5	58	6,9	0,9	1,2	2,2
6998	0,3	26,6	0,5	59	6,6	1	1,2	2,2
6989	0,6	26	0,5	58	7	1,6	1	2,2
6995	1,6	27,2	0,7	53	6,7	3,1	0,4	2
6950	1,7	27,4	0,6	51	6,6	2,4	0,8	1,9
6951	2	27,6	0,6	51	6,8	2,7	0,7	1,9
6991	0,5	29,4	0,8	52	7,6	1,5	1	1,8
6990	0,4	27,2	0,6	59	6,8	1,1	1,2	2,2
6994	1,6	27,6	0,6	54	6,7	3,1	0,7	2
Среднее	1,0	27,3	0,6	54	6,9	2,0	0,7	2,0
MAX	1,7	30,2	0,8	59	7,8	3,1	1,2	2,2
MIN	0,30	25,40	0,40	51	6,20	0,90	0,40	1,80
СКО	0,59	1,19	0,10	2,79	0,45	0,81	0,31	0,14

Заключение. В настоящей статье показана методика обработки информации о показателях качества металлургического шлака (техногенного сырья) с целью определения кластеров объектов с близкими параметрами, определяющие параметры дальнейшей обработки, характерные для каждого кластера, с с применением различных методов кластерного анализа.

Анализируя полученные статистические данные металлургических шлаков ПФ ТОО «Кастинг» с использованием методов кластерного анализа, принимаем, что в пробах относящихся к 1 кластеру модуль основности *Мосн* по значению, выше чем у проб относящимся к кластеру 2 и 3 кластеру (относятся к основным шлаки *Мосн*>1), соответственно и показатель коэффициента качества *К* проб выше, что повышает гидравлическую активность металлургического шлака и позволяет нам использовать металлургические шлаки(техногенные отходы)в месте отбора проб шлакоотвала 1кластера для производства строительных материалов с высокими качественными характеристиками. Нами были изучены и проведен анализ работ связанных с использованием металлургических шлаков(техногенных отходов) в строительных материалах [12,13,14].

По результатам анализа работ связанных с использованием металлургических шлаков(техногенных отходов строительных материалах)[6], а также оценкой качества металлургического шлака ПФ ТОО «Кастинг» отобранного с использованием программного продукта «Комплексная оценка качества и классификация многомерных объектов», нами были разработаны эффективные рецептуры тяжелых бетонных смесей, соответствующие требованиям ГОСТ[15,16], произведена опытная партия строительных изделий(камень пустотелый стеновой), поданы документы на получения патента и на сертификацию готовой продукции.

Настоящая публикация осуществлена в рамках Подпроекта№APP-SSG-17/0290Р «Инновационные технологии использования твердых техногенных отходов предприятий теплоэнергетики и металлургии Павлодарской области в производстве строительных материалов», финансируемого в рамках Проекта «Стимулирование продуктивных

инноваций», поддерживаемого Всемирным Банком и Правительством Республики Казахстан.

Литература

- 1. Гиндис Я.П. Технология переработки шлаков. М.: Стройиздат, 1991. 280 с.
- 2. Барышников В.Г. и др. Вторичные материальные ресурсы черной металлургии. В 2т. Т2 // M.:Экономика,1986. 344 с.
- 3. Мусин В.Г.Состав и свойства смешанных вяжущих на основе металлургических шлаков и полимерных добавок // Строительные материалы. 1991. №2. С. 7–8.
- 4. BellmanF. Activationofblastfurnaceslagbyanewmethod / F. Bellmann, J. Stark // Cem. andConcr. Res.–2009. Vol.39. N8. P. 644–650.
- 5. Александров С.Е., Грызлов В.С и Фараонова К.Н. Гранулированные конверторные шлаки в производстве строительного материала. Строительные материалы. 1973.№3. С.41-52.
- 6. Акишев К.М., Арынгазин К.Ш. Анализ разработок использования техногенных отходов в строительных материалах // Материалы международной научной конференции молодых ученых, магистрантов, студентов и школьников «ХІХСатпаевские чтения», (Павлодар, апрель 2019) Павлодар. Издательство Павлодарского государственного университета, 2019, том 20.— С. 249—255.
- 7. Kodama K.Study on utilization of blast-furnace slag in Concrete Transaction of Japan Sosiety of Civil Ingeneers, vol.12, November1981, P.p.278–279.
- 8. Иванова В.Н., Карпов В.И., Сидоренко Ю.И., Жученко Н.А. Задача кластеризации генотипов в системе поддержки принятия решений при управлении персонифицированным питанием, в сб. научных трудов XXI Международной конференции по мягким вычислениям и измерениям (SCM-2018). Сборник докладов в 2-х томах. Санкт-Петербург. 23–25 мая 2018 г. СПб.: СПб ГЭТУ «ЛЭТИ», 2018 г., том 2, 303–307 с.
- 9. Миркин Б.Г.. Методы кластерного анализа для поддержки принятия решений, 2011. 75 с.
- 10. Айдинян А.Р., Цветкова О.Л.. Алгоритмы кластерного анализа для решения задач с асимметричной мерой близости. Сиб. журнал. выч. мат., 2018, том 21, №2. С.127-138.
- 11. «Комплексная оценка качества и классификация многомерных объектов» Свид. об офиц. регистр.прогр. для ЭВМ № 2006613936 РФ; Мышенков К.С., Карпов В.И., Гетьман В.В. №2006613704; Заяв. 02.11.2006; Зарегистр. 16.11.2006.
- 12. Баженов Ю.М. Способы определения состава различных видов бетона. Учебноепособиедлявузов.М.:Стройиздат,1975.—268 с.
- 13. Батдалов М.М., Гасанов, Р.И и Вишталов В.Х. Разработка технологии высокопрочных бетонов путем направленного конструирования модифицированной структуры с применением термомеханической активации // Строит. матер., оборуд., технол. XXI в. − 2004. − № 5. − С. 69.
- 14. Родионов Р.Б. Инновационные нанотехнологии для строительной отрасли / Р.Б. Родионов // Строит. матер., оборуд., технол. XXI в. -2006. -№10. -C. 57–59.
- 15. ГОСТ 25192-2012. Бетоны. Классификация и общие требования.
- 16. ГОСТ 10180-2012. Методы контроля прочности по контрольным образцам.