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ОЦЕНКИ РОБАСТНОСТИ МНОГОМЕРНЫХ СИСТЕМ УПРАВЛЕНИЯ :  
АЛГЕБРАИЧЕСКИЕ И ЧАСТОТНЫЕ МЕТОДЫ 

Р.О. Оморов, А. Акунова, Т.А. Акунов 
Рассматривается задача исследования робастности многомерных систем управления, для чего 
используются функции чувствительности эллипсоидных показателей качества многомерных 
динамических систем как во временной, так и в частотной областях к вариациям параметров. Для 
решения задачи используется аппарат функций чувствительности экстремальных элементов 
сингулярного разложения критериальных матриц. Совместное использование аппарата функций 
чувствительности с методом пространства состояний позволяет строить модели чувствительности как во 
временной, так и в частотной областях, на основе которых определяются эллипсоидные оценки функций 
чувствительности по состоянию, выходу и ошибке линейных многомерных непрерывных систем в форме 
мажорант и минорант этих функций. Для вычислений используется сингулярное разложение матриц, 
составленных из функций параметрической чувствительности. Полученные эллипсоидные оценки в силу 
содержательных возможностей сингулярного разложения матриц обладают свойством минимальной 
достаточности. Подход позволяет решить проблему «оптимального номинала», то есть проблему выбора 
номинального значения вектора первичных физических параметров. 
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Введение. Постановка задачи 
В развитии современной теории управления наблюдается повышенный интерес [1-6] к 

проблемам робастности и грубости (малочувствительности) систем. Вопросам робастности, с 
которыми тесно связана проблема грубости, посвящены работы ученых и исследователей 
многих стран мира. Традиционное понимание грубости и робастности в современной 
литературе определяет робастность [7, 8] как способность систем сохранять те или иные 
свойства не единственной системы, а множества систем, определенных тем или иным 
способом, а грубость как свойство систем сохранять качественную картину разбиения 
фазового пространства на траектории при малом возмущении топологии, при рассмотрении 
близких по виду уравнений систем. 

Концепция подобия, используемая при конструировании критериальных матриц [9-13], 
сводит исследование вынужденных составляющих переменных многомерной системы к 
анализу линейной алгебраической задачи, связывающей вектор данной переменной с 
вектором начального состояния источника экзогенного воздействия с помощью 
критериальной матрицы, параметризованной временем или частотой внешнего 
гармонического воздействия. Последнее обстоятельство позволяет задачу оценки и 
обеспечения робастности многомерных систем при экзогенном конечномерном воздействии, 
под которой понимается малая чувствительность показателей качества к вариациям 
параметров структурных компонентов систем, свести к проблеме робастности линейной 
алгебраической задачи. Использование сингулярного разложения критериальных  матриц 
многомерных систем позволяет на экстремальных элементах алгебраического спектра 
сингулярных чисел и сингулярных базисов построить мажорантные и минорантные 
эллипсоидные характеристики исследуемых систем по состоянию, выходу и ошибке. 

Авторами выделяется постановка задачи оценки параметрической чувствительности 
континуума эллипсоидных характеристик многомерных систем управления по состоянию, 
выходу и ошибке: оценка подпространств максимальной и минимальной чувствительности, 
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для чего вводятся эллипсоидные оценки функций чувствительности по состоянию, выходу и 
ошибке в виде скалярных мажорант и минорант этих функций. Конструирование оценок 
осуществляется с использованием сингулярного разложения [14] матриц параметрической 
чувствительности. 

За базовый показатель робастности в частотной области принято частотное число 
обусловленности, то есть число обусловленности критериальной матрицы линейной 
алгебраической задачи, в качестве которой используется частотная передаточная матрица 
вход-выход многомерной системы. 

Появление тенденции «робастизации» в развитии теории управления не случайно, она 
продиктована необходимостью рассмотрения современных сложных систем управления (не 
только традиционных систем автоматического управления, а более широкого класса 
синергетических систем управления различной природы) в динамике, со всеми возможными 
изменениями и возмущениями в реальных условиях функционирования и развития 
(эволюции). В настоящее время наиболее рассмотрены и решены вопросы робастной 
устойчивости. 

Первые работы по анализу и синтезу грубых (малочувствительных) систем были 
связаны с развитием теории чувствительности [1]. К настоящему времени недостаточно 
рассмотрены вопросы построения робастных и грубых нелинейных систем управления. 

Методы частотного направления робастной устойчивости 
Предлагается новый взгляд на традиционные методы и средства исследования 

многомерных систем управления, в особенности в частотном направлении теории 
робастности для многомерных систем. К их числу относятся частотные передаточные 
матрицы и конструируемые на их основе частотные характеристики. Задача 
конструирования частотных передаточных матриц решается с использованием концепции 
подобия вынужденной составляющей состояния многомерной системы состоянию источника 
конечномерного экзогенного воздействия. При этом матрица преобразования подобия 
ищется как решение матричного уравнения Сильвестра [15]. 

Рассматривается линейная многомерная непрерывная система 
𝐱̇𝐱(𝑡𝑡) = 𝐅𝐅𝐅𝐅(𝑡𝑡) + 𝐆𝐆𝐆𝐆(𝑡𝑡);   𝐱𝐱(0) = 𝐱𝐱0;   𝐲𝐲(𝑡𝑡) = 𝐂𝐂𝐂𝐂(𝑡𝑡);      (1) 

где x(t) – вектор состояния, y(t) – вектор выхода, 𝛆𝛆(𝑡𝑡) = 𝐠𝐠(𝑡𝑡) − 𝐲𝐲(𝑡𝑡) − ошибка по 
выходу,  𝐠𝐠(t) – экзогенное конечномерное воздействие, 𝐱𝐱 ∈ 𝑅𝑅𝑛𝑛; 𝐠𝐠, 𝐲𝐲 ∈ 𝑅𝑅𝑛𝑛; 𝐅𝐅 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛, 𝐆𝐆,𝐂𝐂𝐓𝐓 ∈
𝑅𝑅𝑛𝑛×𝑚𝑚, где 𝐅𝐅, 𝐆𝐆,С – соответственно, матрицы состояния, входа и выхода системы (1).  

Как известно, пользователей проектируемых систем интересуют такие частотные 
показатели, как полоса пропускания отношения вход-выход на уровне заданного значения 
амплитудной частотной характеристики, показатель колебательности, полоса пропускания 
отношения вход-ошибка на уровне требуемого значения относительной частотной ошибки и 
так далее.  

Для конструирования частотных передаточных матриц воспользуемся положениями 
следующего утверждения. 

Утверждение 1. Пусть g(t) – конечномерное задающее воздействие, которое 
генерируется с помощью автономной конечномерной системы минимальной размерности 

𝒛̇𝒛(𝑡𝑡) = Е𝒛𝒛(𝑡𝑡);  𝐳𝐳(0);  𝐠𝐠(𝑡𝑡) = 𝐇𝐇𝐇𝐇(𝑡𝑡);  𝐇𝐇𝐇𝐇T = 𝐈𝐈;  𝐳𝐳(𝑡𝑡) = exp(𝐄𝐄𝒕𝒕)𝐳𝐳(0),             (2) 

где 𝐳𝐳 ∈ 𝑅𝑅𝑙𝑙,𝐄𝐄 ∈ 𝑅𝑅𝑙𝑙×𝑙𝑙,𝐇𝐇 ∈ 𝑅𝑅𝑚𝑚×𝑙𝑙, 𝐠𝐠 ∈ 𝑅𝑅𝑚𝑚 . Тогда становятся справедливыми представления  

x(t)=exp(Ft)x(0)+(Texp(Еt)−exp(Ft)T)z(0) , 

y(t)=Cx(t)=Cexp(Ft)x(0)+C(Texp(Еt)−exp(Ft)T)z(0), 

ε(t)=g(t)−y(t)=(P−CT)exp(Еt)z(0)−Cexp(Ft)(x(0)−Tz(0)), 

где матрица Т удовлетворяет матричному уравнению Сильвестра   

 𝐓𝐓𝐄𝐄 − 𝐅𝐅𝐅𝐅 = 𝐆𝐆𝐆𝐆.                                                           (3) 
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Доказательство утверждения приведено в [9-12].  

Для построения мажоранты и миноранты амплитудно-частотных характеристик по 
выходу y(t)=y(t,ω) и ошибке ε(t)=ε(t,ω) многомерной непрерывной системы (1) используются 
модельное представление (2) источника внешнего векторного гармонического воздействия с 
матричными компонентами вида  

𝐄𝐄 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �𝐄𝐄𝑖𝑖𝑖𝑖 = � 0 𝜔𝜔
−𝜔𝜔 0� ;   𝑖𝑖 = 1,𝑚𝑚�������, 𝐇𝐇 = 𝐈𝐈𝐦𝐦×𝐦𝐦⨂[1 0], 

где 𝐈𝐈𝑚𝑚×𝑚𝑚 − единичная (𝑚𝑚 × 𝑚𝑚) –матрица, 𝜔𝜔 –частота внешнего гармонического воздействия, 
приложенного ко всем входам системы (1), ⊗ – символ кронекеровского произведения 
матриц, а также используются положения следующего утверждения. 

Утверждение 2. Мажоранты MyM(𝜔𝜔),𝛿𝛿M(𝜔𝜔) и миноранты Mym,𝛿𝛿m(𝜔𝜔) амплитудно-
частотных характеристик по выходу y(t)=y(t,ω) и ошибке ε(t)=ε(t,ω) многомерной 
непрерывной системы удовлетворяют оценочным неравенствам, принимающим для 
внешнего векторного гармонического воздействия вид 

Mym(𝜔𝜔) ≤ ‖𝐲𝐲(t,ω)‖
‖𝐳𝐳(0)‖ = ‖𝐲𝐲(ω)‖

‖𝐳𝐳(0)‖ ≤ MyM(𝜔𝜔),∀𝜔𝜔, Mym(𝜔𝜔), MyM(𝜔𝜔) ∈ 𝜎𝜎𝛼𝛼{𝐂𝐂𝐂𝐂(𝜔𝜔)}, 

𝛿𝛿m(𝜔𝜔) ≤ ‖𝛆𝛆(t,ω)‖
‖𝐳𝐳(0)‖ = ‖𝛆𝛆(ω)‖

‖𝐳𝐳(0)‖ ≤ 𝛿𝛿M(𝜔𝜔),∀𝜔𝜔, 𝛿𝛿m(𝜔𝜔),𝛿𝛿M(𝜔𝜔) ∈ 𝜎𝜎𝛼𝛼{𝐏𝐏 − 𝐂𝐂𝐂𝐂(𝜔𝜔)}, 

в которых 𝜎𝜎𝛼𝛼{∗} – алгебраический спектр сингулярных чисел матриц (*), (∘)𝑀𝑀 и (∘)𝑚𝑚 
означают максимальное и минимальное значения сингулярных чисел, частотная 
передаточная матрица 𝐓𝐓(𝜔𝜔) путем решения уравнения Сильвестра (6) принимает вид 

𝐓𝐓(𝜔𝜔) = −(𝜔𝜔2𝐈𝐈+ 𝐅𝐅2)−1row{[𝐅𝐅𝐅𝐅i 𝜔𝜔𝐆𝐆i]};  i = 1, m�����; 

где ω – частота задающего внешнего векторного гармонического воздействия. 
Доказательство утверждения приведено в [9-12].  
Мажоранты MyM(𝜔𝜔),𝛿𝛿M(𝜔𝜔) и миноранты Mym, 𝛿𝛿m(𝜔𝜔) амплитудно-частотных 

характеристик по выходу y(t)=y(t,ω) и ошибке ε(t)=ε(t,ω) в утверждении 2 получены [9] 
путем сведения исследования многомерных систем управления к векторно-Ошибка! 
Закладка не определена.матричному представлению, параметризованному скалярами 𝑡𝑡 и 𝜔𝜔. 

𝛋𝛋(𝜏𝜏) = 𝚷𝚷(𝜏𝜏)𝛘𝛘(𝜏𝜏),  ∀𝜏𝜏, 𝜏𝜏 = 𝑡𝑡,𝜔𝜔,                                                   (4) 

где 𝛋𝛋 ∈ 𝑅𝑅𝜌𝜌, 𝛘𝛘 ∈ 𝑅𝑅𝜈𝜈 ,𝚷𝚷 ∈ 𝑅𝑅𝜌𝜌×𝜈𝜈 – некоторая критериальная матрица, τ может принимать смысл 
непрерывного времени t, 𝜔𝜔 – частоты источника внешнего гармонического воздействия. 
Пусть матрица 𝚷𝚷(𝜏𝜏) имеет в силу сингулярного разложения представление 

   𝚷𝚷(𝜏𝜏) = 𝐔𝐔(𝜏𝜏)𝚺𝚺(𝜏𝜏)𝐕𝐕𝐓𝐓(𝜏𝜏) ,                                                          (5) 

где 𝚺𝚺(𝜏𝜏) – (𝜌𝜌 × 𝜈𝜈) диагональная матрица, имеющая на главной диагонали сингулярные числа 
матрицы 𝚷𝚷(𝜏𝜏),  𝐔𝐔(𝜏𝜏) – ортогональная  (𝜌𝜌 × 𝜌𝜌) матрица, столбцы которой образуют левый 
сингулярный базис матрицы 𝚷𝚷(𝜏𝜏), 𝐕𝐕(𝜏𝜏)–ортогональная (𝜈𝜈 × 𝜈𝜈) матрица, столбцы которой 
образуют правый сингулярный базис матрицы 𝚷𝚷(𝜏𝜏). Если в (5) перейти к евклидовым 
векторным нормам, то становятся справедливыми оценочные неравенства 

𝛼𝛼𝑚𝑚(𝜏𝜏) ≤ ‖𝛋𝛋(𝜏𝜏)‖ ‖𝛘𝛘(𝜏𝜏)‖ ≤ 𝛼𝛼𝑀𝑀(𝜏𝜏),⁄  ∀𝜏𝜏,                                         (6) 

где 𝛼𝛼𝑚𝑚(𝜏𝜏),𝛼𝛼𝑀𝑀(𝜏𝜏)  – экстремальные элементы алгебраического спектра 𝜎𝜎𝛼𝛼{𝚷𝚷(𝜏𝜏)} сингулярных 
чисел матрицы 𝚷𝚷(𝜏𝜏). Наибольшее и наименьшее сингулярные числа  𝛼𝛼𝑀𝑀(𝜏𝜏),𝛼𝛼𝑚𝑚(𝜏𝜏)  матрицы 
𝚷𝚷(𝜏𝜏) в (6) однозначно определяют на матрице правых сингулярных векторов 𝐕𝐕(𝜏𝜏) те из них, 
которые на сфере ‖𝛘𝛘(𝜏𝜏)‖ = 𝑓𝑓𝑓𝑓𝑓𝑓 отображаются в наибольшую и наименьшую полуоси 
эллипсоида, получаемого с помощью (4), причем длины этих полуосей 𝛼𝛼𝑀𝑀(𝜏𝜏)‖𝛘𝛘(𝜏𝜏)‖ и  
𝛼𝛼𝑚𝑚(𝜏𝜏)‖𝛘𝛘(𝜏𝜏)‖ соответственно.  

Таким образом, знание алгебраических спектров сингулярных чисел 
Mym(𝜔𝜔), MyM(𝜔𝜔) ∈ 𝜎𝜎𝛼𝛼{𝐂𝐂𝐂𝐂(𝜔𝜔)} позволяет охватить практически весь круг проблем 
исследования многомерных систем при гармоническом внешнем воздействии в 
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установившемся режиме в скалярной постановке, а использование правого и левого 
сингулярного базисов в сингулярном разложении матриц СТ(𝜔𝜔) и Р-СТ(𝜔𝜔) позволяют дать 
прозрачную геометрическую интерпретацию. 

Конструирование частотных передаточных матриц непрерывных 
многомерных систем для случая многочастотного экзогенного воздействия 

Источник непрерывного многочастотного векторного гармонического воздействия (2) 
будет иметь в качестве матрицы состояния матрицу определенного вида для случая 
вещественнозначного воздействия. 

Утверждение 3. Для непрерывного многочастотного вещественнозначного векторного 
гармонического воздействия матрица 𝐓𝐓(Ω) как решение уравнения Сильвестра  

  𝐓𝐓(Ω)𝐄𝐄(Ω) − 𝐅𝐅𝐅𝐅(Ω) = 𝐆𝐆𝐆𝐆 

может быть записана в форме 
𝐓𝐓(Ω) = 𝑟𝑟𝑟𝑟𝑟𝑟{[𝐓𝐓2𝑖𝑖−1 𝐓𝐓2𝑖𝑖]} = 𝑟𝑟𝑟𝑟𝑟𝑟{−(𝜔𝜔𝑖𝑖

2𝐈𝐈 + 𝐅𝐅2)−1[F𝐆𝐆𝑖𝑖 𝜔𝜔𝑖𝑖𝐆𝐆𝑖𝑖], 𝑖𝑖 = 1,𝑚𝑚������ }.     (7)  

Доказательство утверждения приведено в [9-11].  
Утверждения 1-3 служат для построения мажоранты и миноранты амплитудно-

частотных характеристик по выходу y(t) и ошибке ε(t) многомерной непрерывной системы, а 
также для случая многочастотного векторного гармонического воздействия. При этом 
исходным условием для их вычислений является сведение исследуемой проблемы к 
линейной алгебраической задаче вида (4), связывающей вектор начального состояния 
источника внешнего гармонического воздействия с выходом y(t) и ошибкой ε(t), а матрица, 
подлежащая сингулярному разложению, как указано в Утверждении 2, принимает вид СТ и 
P-CT.  

Оценка робастности непрерывных многомерных систем 
В проблемно ориентированном виде робастность авторами понимается как малая 

чувствительность качества процессов в многомерных непрерывных системах к вариациям 
параметров их структурных элементов при конечномерном внешнем воздействии. 

В этой связи в работе исследуется параметрическая чувствительность эллипсоидных 
показателей качества многомерных непрерывных систем в постановке, когда диапазон 
вариаций параметров системы допускает применение аппарата теории чувствительности в 
пределах возможностей функций чувствительности первого порядка. 

Робастность как малая чувствительность линейной алгебраической 
задачи 

Оценки эллипсоидных характеристик многомерных непрерывных систем в форме 
мажорант и минорант этих характеристик были получены путем сведения проблемы к 
линейной алгебраической задаче. В силу этого обстоятельства становится естественным 
рассмотрение робастности многомерных систем при внешнем векторном гармоническом 
воздействии как малой чувствительности линейной алгебраической задачи 

 𝛋𝛋(𝜏𝜏, 𝑞𝑞) = 𝚷𝚷(𝜏𝜏, 𝑞𝑞)𝛘𝛘(0),𝛘𝛘(0) = 𝛘𝛘(𝑡𝑡 = 0),                                       (8) 

q – p-мерный вектор изменяющихся квазистационарных параметров с номинальным 
значением 𝐪𝐪0, для которого 

𝛋𝛋(𝑡𝑡,𝜔𝜔, 𝑞𝑞 = 𝑞𝑞0) = 𝛋𝛋(𝑡𝑡,𝜔𝜔);  𝚷𝚷(𝑡𝑡,𝜔𝜔, 𝑞𝑞 = 𝑞𝑞0) = 𝚷𝚷(𝑡𝑡,𝜔𝜔).                           (9) 

При конечномерном экзогенном воздействии исследование линейной алгебраической 
задачи (8) может быть сведено к исследованию стационарной по t задаче 

 𝛋𝛋(𝜔𝜔, 𝑞𝑞) = 𝚷𝚷(𝜔𝜔)𝛘𝛘(0).                                                      (10) 

Таким образом, опираясь на описывающие линейную алгебраическую задачу 
соотношения (8)÷(10), можно осуществить анализ чувствительности линейной 
алгебраической задачи (10) к вариации ее векторных и матричных компонентов, 
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порождаемых вариацией ∆𝐪𝐪 вектора первичных физических параметров q относительно 
номинального значения 𝐪𝐪0 в двух постановках. 

В первой постановке векторные элементы (10) представляются соответственно в левом 
и правом сингулярных базисах матрицы 𝚷𝚷(𝜔𝜔), при этом задача исследования 
чувствительности (10) сводится к анализу чувствительности сингулярных чисел, а также 
элементов левого и правого сингулярных базисов 𝚷𝚷(𝜔𝜔). 

Во второй постановке оценивается норма приращения ∆𝛋𝛋(𝜔𝜔) вектора 𝛋𝛋(𝜔𝜔), 
порожденного приращениями ∆𝚷𝚷(𝜔𝜔) матрицы 𝚷𝚷(𝜔𝜔) и ∆𝛘𝛘(0) вектора 𝛘𝛘(0) относительно их 
номинальных реализаций, порожденных вариациями совокупности первичных параметров. В 
такой постановке переход от норм приращений к их относительным значениям 𝛿𝛿(∘) ≜
‖Δ(∘)‖ ‖(∘)‖⁄  позволяет оценить относительную ошибку решения линейной задачи (10) в 
прямой или инверсной формах с помощью числа обусловленности 𝐶𝐶{𝚷𝚷(𝜔𝜔)} матрицы 𝚷𝚷(𝜔𝜔). 

Конструирование функций чувствительности мажорантных и 
минорантных характеристик непрерывных многомерных систем 

При конструировании функций параметрической чувствительности мажорантных и 

минорантных частотных характеристик непрерывной многомерной системы будем полагать, 

что зависящее от вектора параметров q векторно-матричное представление последней имеет 

вид 

 𝐱̇𝐱(𝑡𝑡) = 𝐅𝐅(𝐪𝐪)𝐱𝐱(𝑡𝑡) + 𝐆𝐆(𝐪𝐪)𝐠𝐠(𝑡𝑡);  y(𝑡𝑡) =C(𝐪𝐪)𝑥𝑥(𝑡𝑡),                                (11) 

где 𝐅𝐅(𝐪𝐪)𝐪𝐪=𝐪𝐪0 = 𝐅𝐅;  𝐆𝐆(𝐪𝐪)𝐪𝐪=𝐪𝐪0 = 𝐆𝐆, 𝐂𝐂(𝐪𝐪)𝐪𝐪=𝐪𝐪0 = 𝐂𝐂. 

Очевидно, зависимость от вектора параметров q матричных элементов непрерывной 
многомерной системы (11) порождает зависимость от этого вектора мажорантных и 
минорантных амплитудных частотных характеристик системы. 

Ограничимся в дальнейшем амплитудными частотными характеристиками отношения 
вход-выход и относительной частотной ошибкой. Тогда для мажорантных и минорантных 
частотных характеристик системы (11) можно записать 

𝑀𝑀𝑦𝑦𝑦𝑦(𝜔𝜔,𝐪𝐪) = 𝛼𝛼𝑀𝑀�𝚷𝚷𝑦𝑦(𝜔𝜔,𝐪𝐪) = 𝐂𝐂(𝐪𝐪)𝐓𝐓(𝜔𝜔,𝐪𝐪)�,                                  (12) 

𝑀𝑀𝑦𝑦𝑦𝑦(𝜔𝜔,𝐪𝐪) = 𝛼𝛼𝑚𝑚�𝚷𝚷𝑦𝑦(𝜔𝜔,𝐪𝐪) = 𝐂𝐂(𝐪𝐪)𝐓𝐓(𝜔𝜔,𝐪𝐪)�,                                  (13) 

𝛿𝛿𝑀𝑀(𝜔𝜔,𝐪𝐪) = 𝛼𝛼𝑀𝑀{𝚷𝚷𝜺𝜺(𝜔𝜔,𝐪𝐪) = 𝐇𝐇 − 𝐂𝐂(𝐪𝐪)𝐓𝐓(𝜔𝜔,𝐪𝐪)},                              (14) 

𝛿𝛿𝑚𝑚(𝜔𝜔,𝐪𝐪) = 𝛼𝛼𝑚𝑚{𝚷𝚷𝜺𝜺(𝜔𝜔,𝐪𝐪) = 𝐇𝐇 − 𝐂𝐂(𝐪𝐪)𝐓𝐓(𝜔𝜔,𝐪𝐪)}.                              (15) 

В выражениях (12) - (15) матрица 𝐓𝐓(𝜔𝜔,𝐪𝐪) является решением матричного уравнения 
Сильвестра 

𝐓𝐓(𝜔𝜔,𝐪𝐪)𝐄𝐄(𝐪𝐪) − 𝐅𝐅(𝐪𝐪)𝐓𝐓(𝜔𝜔,𝐪𝐪) = 𝐆𝐆𝐆𝐆(𝐪𝐪) .                                      (16) 

Функции чувствительности мажорантных и минорантных частотных характеристик 
(12) - (15) к вариации j-го элемента 𝐪𝐪𝑗𝑗 вектора параметров q в силу определения получают 
представления 

𝑀𝑀𝑦𝑦𝑦𝑦𝑞𝑞𝑗𝑗(𝜔𝜔) ≜ 𝜕𝜕
𝜕𝜕𝑞𝑞𝑗𝑗

𝑀𝑀𝑦𝑦𝑦𝑦(𝜔𝜔, 𝑞𝑞)q=𝑞𝑞0 = 𝜕𝜕
𝜕𝜕𝑞𝑞𝑗𝑗

𝛼𝛼𝑀𝑀�𝚷𝚷𝑦𝑦(𝜔𝜔, 𝑞𝑞)�
q=𝑞𝑞0

,               (17) 

𝑀𝑀𝑦𝑦𝑦𝑦𝑞𝑞𝑗𝑗(𝜔𝜔) ≜ 𝜕𝜕
𝜕𝜕𝑞𝑞𝑗𝑗

𝑀𝑀𝑦𝑦𝑦𝑦(𝜔𝜔, 𝑞𝑞)q=𝑞𝑞0 = 𝜕𝜕
𝜕𝜕𝑞𝑞𝑗𝑗

𝛼𝛼𝑚𝑚�𝚷𝚷𝑦𝑦(𝜔𝜔, 𝑞𝑞)�
q=𝑞𝑞0

,               (18) 

𝛿𝛿𝑀𝑀𝑞𝑞𝑗𝑗(𝜔𝜔) ≜ 𝜕𝜕
𝜕𝜕𝑞𝑞𝑗𝑗

𝛿𝛿𝑀𝑀(𝜔𝜔, 𝑞𝑞)q=𝑞𝑞0 = 𝜕𝜕
𝜕𝜕𝑞𝑞𝑗𝑗

𝛼𝛼𝑀𝑀{𝚷𝚷𝜀𝜀(𝜔𝜔, 𝑞𝑞)}q=𝑞𝑞0 ,                      (19) 

𝛿𝛿𝑚𝑚𝑞𝑞𝑗𝑗(𝜔𝜔) ≜ 𝜕𝜕
𝜕𝜕𝑞𝑞𝑗𝑗

𝛿𝛿𝑚𝑚(𝜔𝜔, 𝑞𝑞)q=𝑞𝑞0 = 𝜕𝜕
𝜕𝜕𝑞𝑞𝑗𝑗

𝛼𝛼𝑚𝑚{𝚷𝚷𝜀𝜀(𝜔𝜔, 𝑞𝑞)}q=𝑞𝑞0 .                    (20) 
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Нетрудно видеть, что функции чувствительности, определенные соотношениями 
(17)÷(20), оказываются заданными на функциях чувствительности элементов сингулярного 
разложения соответствующих критериальных матриц. Все функции параметрической 
чувствительности (17)÷(20) зависят от частоты 𝜔𝜔 внешнего гармонического воздействия  
𝐠𝐠(𝑡𝑡) многомерной непрерывной системы (1), а потому они справедливо могут быть названы 
частотными функциями чувствительности. 

Алгоритм 1 оценки чувствительности мажорантных и минорантных частотных 
характеристик. 

Решение уравнение Сильвестра при номинальном значении 𝐪𝐪 = 𝐪𝐪0 вектора параметров 
относительно матрицы 𝐓𝐓(𝜔𝜔). Конструирование критериальных матриц  

𝚷𝚷𝑦𝑦(𝜔𝜔) = 𝐂𝐂𝐂𝐂(𝜔𝜔);  𝚷𝚷𝜀𝜀(𝜔𝜔) = 𝐇𝐇 − 𝐂𝐂𝐂𝐂(𝜔𝜔).                                        (21) 
1. Конструирование сингулярных разложений матриц (21)  

𝚷𝚷𝑦𝑦(𝜔𝜔) = 𝐔𝐔(𝜔𝜔)𝚺𝚺(𝜔𝜔)𝐕𝐕𝑇𝑇(𝜔𝜔);  𝚷𝚷𝜀𝜀(𝜔𝜔) = 𝐔𝐔𝜀𝜀(𝜔𝜔)𝚺𝚺𝜀𝜀(𝜔𝜔)𝐕𝐕𝜀𝜀𝑇𝑇(𝜔𝜔) .                        (22) 
2. Вычисление матриц чувствительности 𝚷𝚷𝑦𝑦𝑞𝑞𝑗𝑗(𝜔𝜔) и 𝚷𝚷𝜀𝜀𝑞𝑞𝑗𝑗(𝜔𝜔) с помощью соотношений 

𝚷𝚷𝑦𝑦𝑞𝑞𝑗𝑗(𝜔𝜔) = 𝐂𝐂𝑞𝑞𝑗𝑗𝐓𝐓(𝜔𝜔) + 𝐂𝐂𝐓𝐓𝑞𝑞𝑗𝑗(𝜔𝜔); 𝚷𝚷𝜀𝜀𝑞𝑞𝑗𝑗(𝜔𝜔) = −𝚷𝚷𝑦𝑦𝑦𝑦𝑗𝑗(𝜔𝜔) ,           (23) 
где 𝐓𝐓𝑞𝑞𝑗𝑗(𝜔𝜔) матрица сепаратной чувствительности вычисляется с помощью 

матричного уравнения Сильвестра 
𝐓𝐓𝑞𝑞𝑗𝑗(𝜔𝜔)𝐄𝐄(𝜔𝜔) + 𝐅𝐅𝐓𝐓𝑞𝑞𝑗𝑗(𝜔𝜔) = 𝐆𝐆𝑞𝑞𝑗𝑗𝐇𝐇 + 𝐅𝐅𝑞𝑞𝑗𝑗𝐓𝐓(𝜔𝜔).                                 (24) 

3. Конструирование матриц 𝐒𝐒𝑦𝑦𝑗𝑗(𝜔𝜔) и 𝐒𝐒𝜀𝜀𝑗𝑗(𝜔𝜔) в силу соотношений 
𝐒𝐒𝑦𝑦𝑗𝑗(𝜔𝜔) = 𝐔𝐔𝑇𝑇(𝜔𝜔)𝚷𝚷𝑦𝑦𝑞𝑞𝑗𝑗(𝜔𝜔)𝐕𝐕(𝜔𝜔) ; 𝐒𝐒𝜀𝜀𝑗𝑗(𝜔𝜔) = 𝐔𝐔𝜀𝜀𝑗𝑗

𝑇𝑇 (𝜔𝜔)𝚷𝚷𝜀𝜀𝑞𝑞𝑗𝑗(𝜔𝜔)𝐕𝐕𝜀𝜀(𝜔𝜔) .           (25) 
4. Конструирование функций чувствительности мажорантных и минорантных 

амплитудных частотных характеристик вход-выход и относительной частотной 
ошибки с помощью (17) - (20) 

𝑀𝑀𝑦𝑦𝑦𝑦𝑞𝑞𝑗𝑗(𝜔𝜔) = �𝐒𝐒𝑦𝑦𝑗𝑗(𝜔𝜔)�
𝑀𝑀𝑀𝑀

 ;   𝑀𝑀𝑦𝑦𝑦𝑦𝑞𝑞𝑗𝑗(𝜔𝜔) = �𝐒𝐒𝑦𝑦𝑗𝑗(𝜔𝜔)�
𝑚𝑚𝑚𝑚

,              (26) 

𝛿𝛿𝑀𝑀𝑀𝑀𝑗𝑗(𝜔𝜔) = �𝐒𝐒𝜀𝜀𝑗𝑗(𝜔𝜔)�
𝑀𝑀𝑀𝑀

;  𝛿𝛿𝑚𝑚𝑚𝑚𝑗𝑗(𝜔𝜔) = �𝐒𝐒𝜀𝜀𝑗𝑗(𝜔𝜔)�
𝑚𝑚𝑚𝑚

.                         (27) 

5. Вычисление конечных вариаций мажорантных и минорантных частотных 
характеристик многомерной непрерывной системы (1), порожденных конечной 
вариацией ∆𝐪𝐪𝑗𝑗  𝑗𝑗 −го компонента 𝐪𝐪𝑗𝑗 вектора параметров q 

∆𝑀𝑀𝑦𝑦𝑀𝑀𝑗𝑗
(𝜔𝜔) = 𝑀𝑀𝑦𝑦𝑀𝑀𝑞𝑞𝑗𝑗

(𝜔𝜔)∆𝐪𝐪𝑗𝑗;   ∆𝑀𝑀𝑦𝑦𝑚𝑚𝑗𝑗
(𝜔𝜔) = 𝑀𝑀𝑦𝑦𝑚𝑚𝑞𝑞𝑗𝑗

(𝜔𝜔)∆𝐪𝐪𝑗𝑗 ,                  (28) 

∆𝛿𝛿𝑀𝑀𝑗𝑗
(𝜔𝜔) = 𝛿𝛿𝑀𝑀𝑞𝑞𝑗𝑗

(𝜔𝜔)∆𝐪𝐪𝑗𝑗;    ∆𝛿𝛿𝑚𝑚𝑗𝑗
(𝜔𝜔) = 𝛿𝛿𝑚𝑚𝑞𝑞𝑗𝑗

(𝜔𝜔)∆𝐪𝐪𝑗𝑗.                           (29) 
Замечание. В связи с тем, что существует явное вещественнозначное решение 

матричного уравнения Сильвестра (16) 
𝐓𝐓(𝜔𝜔,𝐪𝐪) = −�𝜔𝜔2𝐈𝐈 + 𝐅𝐅2(𝐪𝐪)�

−1
row{[𝐅𝐅(𝐪𝐪)𝐆𝐆𝑖𝑖(𝐪𝐪) 𝜔𝜔𝐆𝐆𝑖𝑖(𝐪𝐪)], 𝑖𝑖 = 1,𝑚𝑚������}  ,         (30) 

то альтернативой вычислению матрицы сепаратной чувствительности 𝐓𝐓𝑞𝑞𝑗𝑗  в п.3 
алгоритма с помощью решения матричного уравнения (24) является непосредственное 
дифференцирование (30) по 𝐪𝐪𝑗𝑗, что дает для 𝐓𝐓𝑞𝑞𝑗𝑗  представление 

𝐓𝐓𝑞𝑞𝑗𝑗(𝜔𝜔) = −(𝜔𝜔2𝐈𝐈 + 𝐅𝐅2)−1 �𝐅𝐅𝑞𝑞𝑗𝑗𝐅𝐅 + 𝐅𝐅𝐅𝐅𝑞𝑞𝑗𝑗� (𝜔𝜔2𝐈𝐈 + 𝐅𝐅2)−1row{[𝐅𝐅𝐆𝐆𝑖𝑖 𝜔𝜔𝐆𝐆𝑖𝑖], 𝑖𝑖 = 1,𝑚𝑚������} −
−(𝜔𝜔2𝐈𝐈 + 𝐅𝐅2)−1row��𝐅𝐅𝑞𝑞𝑗𝑗𝐆𝐆𝑖𝑖 + 𝐅𝐅𝐆𝐆𝑞𝑞𝑗𝑗 𝜔𝜔𝐆𝐆𝑞𝑞𝑗𝑗�, 𝑖𝑖 = 1,𝑚𝑚�������.                             (31) 

Необходимо заметить, что полученные частотные функции чувствительности 
непрерывных многомерных систем содержательно подобны функциям траекторной 
чувствительности во временной области [16]. 

Чувствительность линейной алгебраической задачи к вариациям 
совокупности параметров. Частотные числа обусловленности  

Рассмотрим возмущение линейной алгебраической задачи, порожденное приращением 
∆𝐪𝐪 совокупности первичных физических параметров, приводящих к вариации 
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∆𝚷𝚷(𝑡𝑡,𝜔𝜔,𝐪𝐪0,∆𝐪𝐪) матрицы 𝚷𝚷(𝑡𝑡,𝜔𝜔,𝐪𝐪0) ≜  𝚷𝚷(𝑡𝑡,𝜔𝜔), а также приращением ∆𝛘𝛘(0)  вектора 𝛘𝛘(0) 
начального состояния источника экзогенного гармонического воздействия. Вариации 
∆𝚷𝚷(𝑡𝑡,𝜔𝜔,𝐪𝐪0,∆𝐪𝐪)  и ∆𝛘𝛘(0) порождают вариацию ∆𝛋𝛋(𝑡𝑡,𝜔𝜔), определяемую векторно-матричным 
соотношением 

∆𝛋𝛋(𝑡𝑡,𝜔𝜔) = ∆𝚷𝚷(𝑡𝑡,𝜔𝜔,𝐪𝐪0,∆𝐪𝐪)𝜒𝜒(0) + 𝚷𝚷(𝑡𝑡,𝜔𝜔)∆𝛘𝛘(0) + ∆𝚷𝚷(𝑡𝑡,𝜔𝜔,𝐪𝐪0,∆𝐪𝐪)∆𝛘𝛘(0)        (32) 
Переход в (32) к соотношению по согласованным матричным и векторным нормам 

приводит к неравенству 
‖∆𝛋𝛋(𝑡𝑡,𝜔𝜔)‖ ≤ ‖∆𝚷𝚷(𝑡𝑡,𝜔𝜔,𝐪𝐪0,∆𝐪𝐪)‖ ∙ ‖𝛘𝛘(0)‖ + ‖𝚷𝚷(𝑡𝑡,𝜔𝜔)‖ ∙ ‖∆𝛘𝛘(0)‖ + 

+‖∆𝚷𝚷(𝑡𝑡,𝜔𝜔,𝐪𝐪0,∆𝐪𝐪)‖ ∙ ‖∆𝛘𝛘(0)‖ .                                                          (33) 
Введем в рассмотрение относительные значения вариаций векторных и матричных 

компонентов линейной задачи (33), определив ее соотношениями 
𝛿𝛿𝜅𝜅(𝑡𝑡,𝜔𝜔) ≜ ‖∆𝛋𝛋(𝑡𝑡,𝜔𝜔)‖

‖𝛋𝛋(𝑡𝑡,𝜔𝜔)‖ ;  𝛿𝛿𝜒𝜒(0) ≜ ‖∆𝛘𝛘(0)‖
‖𝛘𝛘(0)‖ ;  𝛿𝛿Π(𝑡𝑡,𝜔𝜔) ≜ ‖∆𝚷𝚷(𝑡𝑡,𝜔𝜔,𝐪𝐪0,∆𝐪𝐪)‖

‖𝚷𝚷(𝑡𝑡,𝜔𝜔)‖ .                         (34) 
Сформулируем на основе рассмотрения номинальной версии линейной алгебраической 

задачи оценку 
‖∆𝛋𝛋(𝑡𝑡,𝜔𝜔)‖ ≥ ‖𝛘𝛘(0)‖

‖𝚷𝚷+(𝑡𝑡,𝜔𝜔)‖ ,                                                   (35) 

где +)(  – матрица псевдообратная исходной )( . 
Нетрудно видеть, что (33), (34), и (35) позволяют сконструировать оценку 

𝛿𝛿𝜅𝜅(𝑡𝑡,𝜔𝜔) ≤ ‖𝚷𝚷(𝑡𝑡,𝜔𝜔)‖ ∙ ‖𝚷𝚷+(𝑡𝑡,𝜔𝜔)‖�𝛿𝛿𝜒𝜒(0) + 𝛿𝛿Π(𝑡𝑡,𝜔𝜔) + 𝛿𝛿𝜒𝜒(0)𝛿𝛿Π(𝑡𝑡,𝜔𝜔)�        (36) 
Нетрудно видеть, что мультипликативная конструкция из матричных норм ‖𝚷𝚷(𝑡𝑡,𝜔𝜔)‖ ∙

‖𝚷𝚷+(𝑡𝑡,𝜔𝜔)‖ представляет собой число обусловленности 𝐶𝐶{𝚷𝚷(𝑡𝑡,𝜔𝜔)} матрицы 𝚷𝚷(𝑡𝑡,𝜔𝜔). В связи 
с этим, используя обозначения  

𝐶𝐶{𝚷𝚷(𝑡𝑡,𝜔𝜔)} ≜ ‖𝚷𝚷(𝑡𝑡,𝜔𝜔)‖ ∙ ‖𝚷𝚷+(𝑡𝑡,𝜔𝜔)‖,                                          (37) 
неравенство (36) можно записать в виде 

𝛿𝛿𝜅𝜅(𝑡𝑡,𝜔𝜔) ≤ 𝐶𝐶{𝚷𝚷(𝑡𝑡,𝜔𝜔)}�𝛿𝛿𝜒𝜒(0) + 𝛿𝛿Π(𝑡𝑡,𝜔𝜔) + 𝛿𝛿𝜒𝜒(0)𝛿𝛿Π(𝑡𝑡,𝜔𝜔)� .                   (38) 

Неравенство (38) обнаруживает, что число обусловленности критериальной матрицы  
𝚷𝚷(𝑡𝑡,𝜔𝜔) линейной алгебраической задачи, как один из скалярных неинвариантов 
представляет собой коэффициент усиления относительных погрешностей при возмущении 
векторных и матричных компонентов линейной задачи.  

Если в дальнейшем ограничиваться вход-выходными отношениями непрерывной 
многомерной системы (1), то 𝚷𝚷(𝜔𝜔) оказывается частотной передаточной матрицей этого 
отношения. Экстремальные элементы ее алгебраического спектра сингулярных чисел 
являются мажорантной 𝑀𝑀𝑦𝑦𝑦𝑦(𝜔𝜔) и минорантной 𝑀𝑀𝑦𝑦𝑦𝑦(𝜔𝜔) амплитудными частотными 
характеристиками этого отношения. В связи со сказанным можно ввести в рассмотрение 
число обусловленности 𝐶𝐶𝑦𝑦(𝜔𝜔) отношения вход-выход (частотной передаточной матрицы 
вход-выход), определенное соотношением 

𝐶𝐶𝑦𝑦(𝜔𝜔) ≜ 𝑀𝑀𝑦𝑦𝑦𝑦(𝜔𝜔)

𝑀𝑀𝑦𝑦𝑦𝑦(𝜔𝜔) .                                                            (39) 

Нетрудно видеть, что частотное число обусловленности 𝐶𝐶𝑦𝑦(𝜔𝜔) отношения вход-выход 
многомерных систем как функция частоты 𝜔𝜔 являются элементом функционального 
пространства 𝐿𝐿∆Ω𝑃𝑃 , где 𝑝𝑝 → ∞, ∆Ω = [𝜔𝜔: 0 ≤ 𝜔𝜔 ≤ ∞] для непрерывных систем. Норма  
�𝐶𝐶𝑦𝑦(𝜔𝜔)�

𝑝𝑝→∞
 частотного числа обусловленности как элемента функционального 

пространства определяется соотношением 
�𝐶𝐶𝑦𝑦(𝜔𝜔)�

∞
= sup

𝜔𝜔∈ΔΩ
𝐶𝐶𝑦𝑦(𝜔𝜔) .                                               (40) 

Задача синтеза многомерных частотно робастных непрерывных систем в классе хорошо 
обусловленных отношений «вход-выход» может быть решена методами обобщенного 
модального управления [11,12], доставляющего матрице состояния системы модально-
робастное представление. При этом в силу асимптотических свойств оценка частотного 
числа обусловленности отношения «вход-выход» во всем диапазоне частот экзогенного 
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гармонического воздействия принимает минимальное значение, степень отклонения 
которого от единицы определяется степенью отклонения от единицы числа обусловленности 
матрицы собственных векторов. 

Заключение 
Решена задача исследования чувствительности эллипсоидных характеристик 

многомерных динамических систем к вариациям параметров с помощью построения 
эллипсоидных оценок функций чувствительности по состоянию, выходу и ошибке линейных 
многомерных непрерывных систем с использованием сингулярного разложения матриц, 
составленных из функций параметрической чувствительности. Концепция подобия 
позволяет с единых алгоритмических позиций построить частотные передаточные матрицы 
многомерных систем для одночастотного и многочастотного случаев возбуждения входов 
систем гармоническим экзогенным воздействием для решения задачи синтеза частотно 
робастных систем. 

Подход позволяет исследовать чувствительности\ь эллипсоидных характеристик 
многомерных динамических систем во временной области. 
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