ANALYSIS OF THE STATE AND PROSPECTS OF ARTIFICIAL IMMUNE SYSTEMS DEVELOPMENT FOR INTELLECTUAL CONTROL OF COMPLEX OBJECTS
Keywords:
intelligent control systems, complex objects, information technology, artificial immune systems, modified algorithms, industrial equipment, modern microprocessor technology.Abstract
An analytical review of the developed modern applications based on the promising bioinspired direction of artificial immune systems for the intelligent control of complex objects over the past five years is carried out. Shows the relevance and development opportunities of this approach of artificial intelligence for solving the problem of intellectualizing the industrial sector and the successful implementation of the concept of industrial modernization "Industry 4.0". The features and difficulties arising in the development of these systems, as well as possible ways of their implementation, are considered. A special role is assigned to the study of modified algorithms of artificial immune systems, which allow combining the advantages of various approaches and significantly leveling their disadvantages when used together. The results obtained will be used in the development of a unified artificial immune system, which makes it possible to most effectively form an immune response for different nature data and size.
References
Gioacchino de Candia. Industry 4.0 and its aberrations. – 2019. – P. 1-14. DOI:10,13140/RG.2.2.36086.96323.
Advances in Industrial Automation and Smart Manufacturing / Ed. A. Arockiarajan, M. Duraiselvam, Ramesh Raju // Lecture Notes in Mechanical Engineering. - Springer Singapore, 2021. DOI: 10.1007/978-981-15-4739-3.
Rieger C., Ray I., Zhu Q., Haney M. Industrial Control Systems Security and Resiliency. - Springer, 2019. – P.1-276. DOI: 10.1007/978-3-030-18214-4.
Samigulina G.A., Samigulina Z.I. Development of Smart technology for complex objects prediction and control on the basis of a distributed control system and an artificial immune systems approach // Advances in Science. Technology and Engineering Systems Journal. – 2019. – Vol. 4, №.3. – P. 75-87. 5. Mohapatra S., Khilar P.M., Swain R.R. Fault diagnosis in wireless sensor network using clonal selection principle and probabilistic neural network approach // International Journal of Communication Systems. - 2019. - № 32(12). DOI:10.1002/dac.4138.
T. Wang, H. Gao, J. Qiu. A combained adaptive neural network and nonlinear model predictive control for multirate networked industrial process control // IEEE Transactions on Neural Networks and Learning Systems. - 2016. – Vol. 27(2), - P. 416-425. DOI: 10.1109/TNNLS.2015.2411671.
Boonyopakorn P., Meesad P. The Evaluated Measurement of a Combined Genetic Algorithm and Artificial Immune System // International Journal of Electrical and Computer Engineering. – 2017. – Vol. 7, №. 4. – Р.2071-2084.
Карпенко А.П. Современные методы поисковой оптимизации. Алгоритмы, вдохновленные природой: учебное пособие. - Москва: Издательство МГTУ, 2017. – 446 с.
Sotiropoulos D., Tsihrintzis G. Artificial Immune Systems // Machine Learning Paradigms. Intelligent systems reference library. – Springer, 2017. – P. 159-235.
Bejoy B.J., Janakiraman S. Artificial Immune System based intrusion detection systems - comprehensive review // International Journal of Computer Engineering & Technology. – 2017. - Vol. 8, №. 1. – P. 85–95.
Mikherskii R.M., Mikherskii M.R. Analysis of the Use of Artificial Immune Systems // IOP Conf. Series: Materials Science and Engineering. – 2021. - Vol. 1069. DOI:10.1088/1757-899X/1069/1/012025.
Woodland D. Plasticity in Adaptive Immunity // Viral immunology. – 2016. – Vol. 26, №.5. – P. 301. 13. Fasanotti L., Cavalieri S., Dovere E., Gaiardelli P., Pereira C. An artificial immune intelligent maintenance system for distributed industrial environments // Proceedings of the Institution of Mechanical Engineers. Part 0: Journal of Risk and Reliability. - 2018. - Vol. 232, №. 4. - P. 401-414. DOI: 10.1177/1748006X18769208.
Kidd R. Artificial Immune Systems: An Overview for Faulting Actuators // Actuators. – 2019. – Vol. 8(3). – P. 53. DOI: 10.3390/act8030053.
Suma T., Murugesan R. Artificial Immune Algorithm for Subtask Industrial Robot Scheduling in Cloud Manufacturing // J. Phys.: Conf. Ser. National Conference on
Mathematical Techniques and its Applications. – 2018. - Vol.1000. DOI: 10.1088/1742-6596/1000/1/012096.
Rocha A. D., Lima-Monteiro, P., Parreira-Rocha, M., & Barata, J. Artificial immune systems based multi-agent architecture to perform distributed diagnosis // Journal of Intelligent Manufacturing. – 2019. – Vol. 30(4). – P. 2025-2037.
Silva G., Caminhas W., Palhares R. Artificial immune systems applied to fault detection and isolation: A brief review of immune response-based approaches and a case study // Applied Soft Computing. - 2017. – Vol. 57. – P. 118-131.
Aydin I., Karakose M., Karakose E., Akin E. A new fault diagnosis approach for induction motor using negative selection algorithm and its real-time implementation on FPGA // Journal of Intelligent & Fuzzy Systems. – 2018. – Vol. 34(1). – P. 689-701. DOI: 10.3233/JIFS-161964. 19. Wang Rongxi, Xu Gao, Jianmin Gao, Zhiyong Gao. An artificial immune and incremental learning inspired novel framework for performance pattern identification of complex electromechanical systems // Science China Technological Sciences. – 2020. - Vol. 63(1). – P.1-13. DOI: 10.1007/s11431-019-9532-5.
Padmanabhan S., Chandrasekaran M., Ganesan S., Khan M., Navakanth P. Optimal Solution for an Engineering Applications Using Modified Artificial Immune System // Materials of Science and Engineering. – 2017. – Vol. 173. – P. 1-5. DOI:10.1088/1757-899X/183/1/012025. 21. Abid А., Khan M.T., Haq I.U., Anwar S., Iqbal J. An Improved Negative Selection Algorithm-Based Fault Detection Method // IETE Journal of Research. – 2020. DOI: 10.1080/03772063.2020.1768158. 22. Mehare V., Thakur R.S. Data mining models for anomaly detection using artificial immune system / Eds: Tiwari B., Tiwari V., Das K., Mishra D., Bansal J // Proceedings of International Conference on Recent Advancement on Computer and Communication. Lecture Notes in Networks and Systems. - Springer, Singapore, 2018. – Vol. 34. - P.425-432. DOI: 10.1007/978-981-10-8198-9_44.
Wang M., Feng S., He C., Li Z., Xue Y. An Artificial Immune System Algorithm with Social Learning and Its Application in Industrial PID Controller Design // Mathematical Problems in Engineering. - 2017. – Vol.3. – P.1-13. DOI: 10.1155/2017/3959474.
Samigulina G.A., Samigulina Z.I. Development of Smart-technologies for prediction and control of complex objects based on modified algorithms of artificial immune systems: Monograph. – Yelm, WA, USA: Science Book Publishing Ноuse, 2020. – 224 p.
Samigulina G.A., Samigulina Z.I. Modified immune network algorithm based on the Random Forest approach for the complex objects control // Artificial Intelligence Review. – 2019. –Vol.52. - P.2457–2473.
Samigulina G.A., Massimkanova Zh.A. Development of Modified Cooperative Particle Swarm Optimization with Inertia Weight for feature selection // Cogent Engineering. – 2020. - Vol. 7, №. 1. DOI: 10.1080/23311916.2020.1788876.
Самигулина Г.А., Самигулина З.И. Разработка интеллектуальной технологии управления сложными объектами на основе унифицированной искусственной иммунной системы // Вестник НТУ «ХПИ». – Харьков, 2020. – Vol. 2(4). – С. 117-122.