CURRENT STATE AND DEVELOPMENT POSSIBILITIES OF INDUSTRIAL ARTIFICIAL INTELLIGENCE IN THE OIL AND GAS INDUSTRY BASED ON NEUROENDOCRINE-IMMUNOLOGICAL INTERACTION
Keywords:
промышленный искусственный интеллект, нефтегазовая отрасль, управление сложным объектом, диагностика оборудования, обработка больших данных, унифицированная искусственная иммунная система, нейроэндокринно-иммунологическое взаимодействие, гомеостазAbstract
The proposed work is devoted to the current state and development trends of the industrial artificial intelligence (AI) in the oil and gas industry using a bioinspired approach of the artificial immune systems (AIS) involving the neuroendocrine component for dynamic complex objects control and diagnosing equipment. The necessity of using approaches, methods of AI and machine learning to analyze big data and predict the behavior of a complex dynamic system is substantiated. The features of the implementation of automated information systems at a modern industrial enterprise in the oil and gas sector and the difficulties that arise in the implementation of these systems are presented. The main approaches of the AIS and the principles of creating an unified artificial immune system (UAIS), as well as the prospects of using the neuroendocrine system (NES) to improve the efficiency of the AIS in order to ensure the uninterrupted functioning of complex technological complexes at oil refineries are considered. The main stages necessary for the realization and implementation of the intelligent technology UIIS-NES in the real production environment are given using the example of the oil refineries of the TengizChevroil and Karachaganak Petroleum Operating.
References
Sircar A., Yadav K., Rayavarapu K., Bist N., Oza H. Application of machine learning and artificial intelligence in oil and gas industry // Petroleum Research. - 2021. - Vol. 6, № 4. - P. 379-391.
Koroteev D., Tekic Z. Artificial intelligence in oil and gas upstream: Trends, challenges, and scenarios for the future // Energy and AI. – 2021. – Vol. 3, № 100041. https://doi.org/10.1016/j.egyai.2020.100041 (дата обращения 15.02.2024).
Pandey R.K., Anil Kumar Dahiya A.K., Agarwal R. and all. Machine learning and data mining assisted petroleum reservoir engineering: a comprehensive review // International Journal of Oil, Gas and Coal Technology. - 2022. - Vol. 30, №4. – P. 359-387. DOI:10.1504/IJOGCT.2021.10043807 (дата обращения 19. 2024).
Pandey R.K., Dahiya A.K., Mandal A. Identifying applications of machine learning and data analytics Based Approaches for optimization of upstream petroleum operations // Energy Technol. – 2021. - Vol.9. - P. 1-20.
Waqar A., Othman I., Shafiq N., Mansoor M.S. Applications of AI in oil and gas projects towards sustainable development: a systematic literature review // Artificial Intelligence Review. - 2023. - № 11. - P. 12771-12798. https://doi.org/10.1007/s10462-023-10467-7 (дата обращения 03.02.2024).
Alkinani H, Al-Hameedi А.T.T., Dunn-Norman S., Flori R. Applications of Artificial Neural Networks in the Petroleum Industry: A Review // SPE Middle East Oil and Gas Show and Conf. – 2019. http://DOI:10.2118/195072-MS (дата обращения 16. 03.2024).
Hasib N., Syed Wajahat Abbas Rizvi, Katiyar V. Artificial immune system: a systematic literature review // Journal of Theoretical and Applied Information Technology. - 2023. - Vol.101, №4. – P. 1469-1486.
Pinto R., Gonçalves G. Application of Artificial Immune Systems in Advanced Manufacturing // Array. – 2022. - Vol. 15, № 100238. https://doi.org/10.1016/j.array.2022.100238 (дата обращения 21.03.2024).
Mikherskii R.M., Mikherskii M.R. Analysis of the Use of Artificial Immune Systems // Proc. of the IOP Conf. Series: Materials Science and Engineering. – 2021. - Vol. 1069012025. - P. 1-6. http: // DOI10.1088/1757-899X/1069/1/012025 (дата обращения 25.02.2024).
Rezvanian A., Vahidipour S.M., Saghiri A.M. CaAIS: Cellular Automata-Based Artificial Immune System for Dynamic Environments // Algorithms. – 2023. - Vol.17, №1. - P.18. https://doi.org/10.3390/a17010018 (дата обращения 09.02.2024).
Souza S. F., Lima F. P. dos A., Chavarette F. R. A New Artificial Immune System Based on Continuous Learning for Pattern Recognition // Revista De Informática Teórica E Aplicada. - 2020. – Vol. 27, № 4. - P. 34–44. https://doi.org/10.22456/2175-2745.102061 (дата обращения 12.03.2024).
Wang Y., Li T., Liu X., Yao J. An adaptive clonal selection algorithm with multiple differential evolution strategies // Information Sciences. – 2022. - Vol. 604. – P.142-169.
Abid A., Khan M.T., Iqbal J., de Silva C.W. Immunity Inspired Hybrid Fault Diagnosis and Conflict Resolution // IEEE/ASME Trans. Mechatron. – 2022. - Vol. 27. - P. 440–451.
Samigulina G.A, Samigulina Z.I. Development of a unified artificial immune system for complex objects control within the framework of the Industry 4.0 concept // J. Procedia Computer Science. Conf. on ENTERprise Information Systems». - Lisboa, Portugal: Elsevier, 2023. – Vol.219C. – P. 824-831. https://DOI:10.1016/j.procs.2023.01.356 (дата обращения 17.03.2024).
Samigulina G.A., Samigulina Z.I. Development of intelligent technology for complex objects control based on a unified artificial immune system and principles of immunological homeostasis for industrial automation using modern microprocessor equipment: monograph. – Yelm, WA, USA: Science Book Publishing House, 2023.–196 p.
Samigulina G.A., Samigulina Z.I. Diagnostics of industrial equipment and faults prediction based on modified algorithms of artificial immune systems // Journal of Intelligent Manufacturing. – Springer, 2022. – P.1-18. https://doi:10.1007/s10845-020-01732-5 (дата обращения 02.02.2024).
Samigulina G.A, Samigulina Z.I., Porubov D.A. Creation of intelligent technology based on a unified artificial immune system and the principles of homeostasis for the control and automation of complex oil and gas industry objects // Proc. of Inter. conf. on Industrial Engineering, Applications and Manufacturing. – Sochi: IEEE, 2022. – P. 1019-1023.
Cannon W.B. Organization for the physiological homeostatic // Phisiol. Rev. – 1929. - Vol.9. - P.399-431.
Еськов В.М., Гудков А.Б., Филатов М.А., Еськов В.В. Принципы гомеостатического регулирования функций организма в экологии человека // Экология человека. - 2019. - №10. - С. 41-49. https://DOI:10.33396/1728-0869.2019-10-41-49 (дата обращения 11.03.2024).
Stovold J., O'Keefe S., Timmis J. Cognitively-inspired homeostatic architecture can balance conflicting needs in robots // arXiv. – 2018. - Vol.1811. - № 0033.
Liu D., Wang Z., Liang H., Zeng X. Artificial Immune Technology Architecture for Electric Power Equipment Embedded System // Proc. of the IEEE Intern. Conf. on Electrical Engineering and Mechatronics Technology. – 2021, № 21438058. https://DOI:10.1109/ICEEMT52412.2021.9601685 (дата обращения 7.03.2024).
Газнюк Л. М., Липич Т. И., Липич В. В., Носков В. А. Гомеостаз как инструмент исследования технологических влияний на здоровье человека // Проблемы социальной гигиены, здравоохранения и истории медицины. – 2022. - № 30(5). - С. 753—760. http://dx.doi.org/10.32687/0869-866X-2022-30-5-753-760 (дата обращения 01.02.2024).
Kolesnik E.A. Stress-reaction as a protective immune mechanism aimed at restoring the organism’s homeostasis // Bulletin of Chelyabinsk state university. Education and healthcare. - 2020. - № 4 (12). - P. 5—14.
Самотруева М.А., Ясенявская А.Л., Цибизова А.А., Башкина О.А., Галимзянов Х.М., Тюренков И.Н. Нейроиммуноэндокринология: современные представления о молекулярных механизмах // Иммунология. – 2017. - № 38(1). - С. 49-59. http://DOI: 10.18821/0206-4952-2017-38-1-49-59 (дата обращения 14.02.2024).
Vallverdú J., Talanov M., Leukhin A., Fatykhova E., Erokhin V. Hormonal computing: a conceptual approach // Front Chem. – 2023. - Vol.11, №1232949. http://doi:10.3389/fchem.2023.1232949 (дата обращения 15.01. 2024).
Elmenreich W., Schnabl A., Schranz M. An artificial hormone-based algorithm for production scheduling from the bottom-up // Proc. of the 13th Inter. Conf. on Agents and Artificial Intelligence. - 2021. – P. 296–303. http://DOI:10.5220/0010243902960303 (дата обращения 19.02.2024).
Vallverdu J. Letter to editor: Hormonal computers? // J. Unconv. Comput. - 2022. - Vol.17. – P. 235–238.
Alkinani H., Tuama A.T., Al-Hameedi, Dunn-Norman S., Flori R. Applications of Artificial Neural Networks in the Petroleum Industry: A Review // SPE Middle East Oil and Gas Show and Conference. – 2019. http://DOI:10.2118/195072-MS (дата обращения 17.02.2024).
Koutsoupakis J., Giagopoulos D., Chatziparasidis I. AI-based condition monitoring on mechanical systems using multibody dynamics models // Engineering Applications of Artificial Intelligence. – 2023. – Vol. 123C, №106467. https://doi.org/10.1016/j.engappai.2023.106467 (дата обращения 08.02.2024).
Kim G., Choi J.G., Ku M., Lim S. Developing a semi-supervised learning and ordinal classification framework for quality level prediction in manufacturing // Computers & Industrial Engineering. – 2023. - Vol. 181, № 109286. https://doi.org/10.1016/j.cie.2023.109286Get rights and content (дата обращения 17.03.2024).
Samigulina G., Samigulina Z. Development of a risk assessment methodology for intelligent technology of diagnosing industrial equipment for complex oil and gas facilities // J. Procedia computer science. Proc. 27th Inter. Conf. on Knowledge Based and Intelligent Information &Engineering Systems. – Athens, Greece: Elsevier, 2023. - Vol. 225. – P.1221-1230.
Samigulina G., Samigulina Z. Development of an approach for Multicimponent Evalution of the efficiency of modified algorithms of artificial immune systems. // J. Procedia Computer Science. Proc. Soft computing and intelligent systems: theory and applications. - Elsevier, 2024. – Vol. 231. - P.746-752.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 проф. Cамигулина Галина Ахметовна, Ph.D, проф. Самигулина Зарина Ильдусовна
This work is licensed under a Creative Commons Attribution 4.0 International License.