СИНГУЛЯРНАЯ ЧУВСТВИТЕЛЬНОСТЬ И ОЦЕНКИ РОБАСТНОСТИ ДИНАМИЧЕСКИХ СИСТЕМ
Ключевые слова:
сингулярное разложение матриц, сингулярные числа, функции чувствительности, параметрические возмущенияАннотация
Рассматриваемая проблема связана с необходимостью обеспечения стабильности эллипсоидных показателей качества функционирования систем управления в условиях вариаций или неопределенности параметров их структурных элементов, а следовательно, с разработкой технологии оценки их нестабильности, вызванной указанными факторами. Для оценки стабильности эллипсоидных показателей качества многомерных систем управления используются функции чувствительности первого порядка сингулярных чисел. SVD1-анализ матриц сингулярной чувствительности позволяет сравнить протекание многомерных управляемых процессов и решить прикладную задачу диагностики сложных динамических систем по определению доминирующих параметров, их наиболее неблагоприятных сочетаний, оценки эффекта введения регулятора, поиска оптимального номинала, а также ранжирование параметров, что особенно ценно в фазе формирования модели.
Библиографические ссылки
Розенвассер Е.Н., Юсупов Р.М. Чувствительность систем управления. М.: Наука, 1981.
Акунов Т.А., Алишеров С., Оморов Р.О., Ушаков А.В. Модальные оценки качества процессов в линейных многомерных системах. - Бишкек: Илим, 1991. 59 с.
Акунов Т. А., Ушаков А. В. Анализ чувствительности эллипсоидных оценок качества многомерных процессов управления // Изв. вузов. Приборостроение. 1991. Т.34, №8. С. 21-27.
Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989.
Оморов Р.О. Робастность интервальных динамических систем. I. Робастность непрерывных линейных интервальных динамических систем//Теория и системы управления. 1995. №1. С. 22-27.
Оморов Р.О. Робастность интервальных динамических систем. II. Робастность дискретных линейных интервальных динамических систем//Теория и системы управления. 1995. №3. С. 3-7.
Оморов, Р. О. Максимальная грубость динамических систем / Р. О. Оморов // Автоматика и телемеханика. – 1991. – № 8. – С. 36-45.
Оморов Р.О. О дискретном аналоге теоремы Харитонова // Наука и новые технологии. – 2002. – № 3. – С. 5-9.
Оморов Р.О. Алгебраический метод исследования робастности интервальных динамических систем //Научно-технический вестник информационных технологий, механики и оптики. 2020. Т.20. № 3. С. 364-370.
Ушаков А.В., Акунова А., Оморов Р.О., Акунов Т.А. Робастные многомерные системы управления: Частотные и алгебраические методы / Под ред. Р.О. Оморова. – Бишкек: Илим, 2022. – 352 с.
Загрузки
Опубликован
Выпуск
Раздел
Категории
Лицензия
Copyright (c) 2023 Р.О. Оморов, А. Акунова, Т.А. Акунов
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.