NON-PARAMETRIC ESTIMATION OF THE SEPARATING SURFACE EQUATION UNDER LARGE SAMPLES AND ITS PROPERTIES
Keywords:
dividing surface, training sample, function, pattern recognition problem, blur coefficient, traditional nonparametric estimationAbstract
The computational efficiency of nonparametric pattern recognition algorithms, which are based on estimates of the probability density of the Rosenblatt-Parzen type, decreases under conditions of large training samples
References
Parzen E. On estimation of a probability density function and mode // Ann. Math. Statistic, 1962, Vol.33. – p. 1065-1076.
Lapko A.V., Lapko V.A. Nonparametric Рattern Recognition Systems Based on Learning a Sample Decomposition by Its Dimension // Рattern recognition and image analysis, 2009. – Vol. 19. - №2. – P. 296 - 302.
Лапко А.В., Лапко В.А. Коллектив непараметрических решающих функций в двуальтернативной задаче распознавания образов // Системы управления и информационные технологии, 2009. – 3.1(37). – С. 156 – 160.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Automation and control problems
This work is licensed under a Creative Commons Attribution 4.0 International License.