BISHKEK CITY SATELLITE DATA ANALISIS FOR SPATIAL DATA INFRASTRUCTURA

Authors

  • Karimova G.T. Kyrgyz State Technical University names after I.Razzakov

Keywords:

satellite images, remote sensing, land use and land cover, geospatial data

Abstract

The wide variety, complexity and quality of Earth remote sensing data continues to grow. The consumer of the finished processed data makes great demands on their quality, thereby complicating the work of developers to keep the service at the level at which this information is provided to the user. This gives rise to the search for the best methods of processing Earth remote sensing data. The purpose of this article is to develop a system for visualizing Earth remote sensing data by merging high-resolution satellite data with medium-resolution data for analysis and decision-making to identify changes in the soil and vegetation cover in Bishkek. The main objective of this work is to study and apply methods for processing and preparing Landsat TM 7 images for subsequent use. The preprocessing process consisted in filtering the data of remote sensing of the earth, using special programs.
To increase the resolution of the multispectral channel, a panchromatic channel with a resolution of 15 m was used by merging and successfully superimposing. This was done in order to increase the information content and the possibility of interpreting satellite images with medium resolution, available in the study area and free of use. Using statistical methods of classification was performed, followed by the allocation of the objects of interest in the image into buffer zones. As a result of the work on the preparation and processing of Earth remote sensing data, it became possible to obtain a visualization map of the green zones of Bishkek. the data obtained can be used to solve the problems of greening cities and increasing park areas.

References

Титаренко К. Методы слияния геоинформационных данных и их реализация на параллельных компьютерных системах. Интернет-ресурс. – Режим доступа: Реферат - Титаренко К. К. - Методы слияния геоинформационных данных и их реализация на параллельных компьютерных системах (donntu.org)

G. Simone, A. Farina, F.C. Morabito, S.B. Serpico, L. Bruzzone. Image fusion techniques for remote sensing applications [Electronic resource] / Интернет-ресурс. – Режим доступа: www/ URL: http://rslab.disi.unitn.it/papers/R21-IF.pdf. – Загл. с экрана.

QuickBird Satellite Images and Sensor Specifications [Electronic resource] / Интернет-ресурс. – Режим доступа: www/ URL: http://www.satimagingcorp.com/satellite-sensors/quickbird.html. – Загл. с экрана.

Image fusion and pan-sharpening: the big picture [Electronic resource] / Интернет-ресурс. – Режим доступа: www/ URL: http://www.geosage.com/highview/imagefusion.html. – Загл. с экрана.

Yun Zhang. Understanding Image Fusion [Electronic resource] / Интернет-ресурс. – Режим доступа: www/ URL: http://studio.gge.unb.ca/unb/zoomview/PERS_Vol70_No6_paper.pdf. – Загл. с экрана.

Seung-Hun Yoo, Sung-Up Jo, Ki-Young Choi, Chang-Sung Jeong. A Framework for Multisensor Image Fusion using Graphics Hardware [Electronic resource] / Интернет-ресурс. – Режим доступа: www/ URL: http://isif.org/fusion/proceedings/fusion08CD/papers/1569108117.pdf. – Загл. с экрана.

Jun Lu, Baoming Zhang, Zhihui Gong, Ersen Li, Hangye Liu. The remote-sensing image fusion based on gpu [Electronic resource] / Интернет-ресурс. – Режим доступа: www/ URL: http://www.isprs.org/proceedings/XXXVII/congress/7_pdf/6_WG-VII-6/32.pdf. – Загл. с экрана.

Qian Du, Oguz Gungor, Jie Shan. Performance Evaluation for Pan-sharpening Techniques [Electronic resource] / Интернет-ресурс. – Режим доступа: www/ URL: http://cobweb.ecn.purdue.edu/~jshan/publications/2005/IGARSS_2005_FusionEvaluation.pdf. – Загл. с экрана.

nVidia CUDA: вычисления на видеокарте или смерть CPU [Electronic resource] / Интернет-ресурс. – Режим доступа: www/ URL: http://www.thg.ru/graphic/nvidia_cuda/index.html. – Загл. с экрана.

Downloads

Published

2022-07-08

Issue

Section

INFORMATION TECHNOLOGY AND INFORMATION PROCESSING

Categories