ON THE FEATURES OF THE NONLINEAR OPTIMIZATION PROBLEM OF OSCILLATION PROCESSES WITH DISTRIBUTED AND BOUNDARY VECTOR CONTROLS

Authors

  • E.F. Abdyldaeva Kyrgyz-Russian Slavic University named after B.N. Yeltsin
  • A. Kerimbekov Kyrgyz-Russian Slavic University named after B.N. Yeltsin

Keywords:

nonlinear optimization problem, distributed vector control, boundary vector control, generalized solution, maximum principle, properties of equal ratios, optimal control, optimal process, minimal value of the functional.

Abstract

In this paper the optimal control problem is investigated for elastic oscillations described by Fredholm integro-differential equations where functions of external and boundary influences nonlinearly depend on control parameters.  The study was carried out using the concept of a generalized solution of boundary value problem for a controlled process.  According to maximum principle for systems with distributed parameters, optimality conditions are established in the form of equalities and inequalities.  Optimality conditiond in the form of equality lead to a system of nonlinear integral equations, which have the property of equal relations, and the conditions in the form of inequalitieslead to differential inequalities with regard to functions of external and boundary sources.  The property of equal relations is one of the features of the considering nonlinear optimization problem.

References

Вольтерра В. Теория функционалов, интегральных и интегро-дифференциальных уравнений / Пер. с англ. // Ред. П.И.Кузнецов. – М.: Наука, 1982. – 304 с.

Владимиров В.С. Математические задачи односкоростной теории переноса частиц // Тр.МИАН. – 1961. – Т. 61. – C. 3–158.

Егоров А.И. Оптимальное управление тепловыми и диффузионными процессами. – М.: Наука, 1978. – 500 с.

Лионс Ж.Л. Оптимальное управление системами, описываемыми уравнениями с частными производными. – М.: Мир,1972. – 414 с.

Sachs E.W., Strauss A.K. Efficient solution of partial integro-differential equation in finance // Appl.Numer. Math. – 2008. Vol. 58, no. 11. – P. 1687–1703.

Kowalewski A. Optimal control of an infinite order hyperbolic system with multiple time-varying lags // Automatyka. – 2011. – T. 15. – P. 53–65.

Thorwe J., Bhalekar S. Solving partial integro-differential equations using Laplace transformmethod // American J. Comput. Appl. Math. – 2012. Vol. 2 (3). – P. 101–104.

Khurshudyan As. Zh. On optimal boundary and distributed control of partial integro-differentialequations // Arch. Contol. Sci. – 2014. Vol. 24 (60), no. 1. – P. 5–25.

Kerimbekov A.K. On solvability of the nonlinear optimal control problem for processes described by the semi-linear parabolic equations // Proc. World Congress on Engineering. London. – 2011. Vol. 1. – P. 270–275.

Kerimbekov A.K. On the solvability of a nonlinear optimal control problem for the thermal processes described by Fredholm integro-differential equations // Current Trends in Analysis and Its Applications: Proc. of the 9th ISAAC Congress (Krakуw 2013) / eds. V.V.Mityushev, M.V.Ruzhansky. London: Springer. – 2015. – P. 803–822. (A Series of Trends in Mathematics.)

Комков В. Теория оптимального управления демпфированием колебаний простых упругих систем. – М.: Мир, 1975. – 158 с.

Краснов М.В. Интегральные уравнения. – М.: Наука, 1975. – 303 c.

Downloads

Published

2023-12-30

Issue

Section

AUTOMATIC CONTROL OF DYNAMIC SYSTEMS AND PROCESSES

Categories