APPLICATION OF NEURAL NETWORK FOR FREQUENCY ANALYSIS OF ELECTROSTATIC DISCHARGE
Keywords:
electrostatic discharge, potential equation, fast Fourier transform, frequency spectrum, neural networkAbstract
The expressions of the frequency spectrum of emitted electrostatic discharge (ESD) fields were obtained in analytical form using the potential equations of emitted fields. The spectral characteristics of air ESD were investigated using artificial neural networks. The amplitude and power spectrum were compared at different discharge voltages, demonstrating that the energy of air ESD predominates in the low-frequency range. The study of the ESD spectrum in the air can serve as reference material and a guide for ESD prevention technology.
References
M.T. Gengog“lu, M. Cebeci, “Investigation of pollution flashover on high voltage insulators using artificial neural network”, Elsevier, Expert Systems with Applications 36 7338-734, (2009).
A. B. Bakasova and A. UuluAskat, "Neuro-fuzzy approach to identification of electromagnetic fields of electrostatic discharge," 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russian Federation, 2023, pp. 1-5, doi: 10.1109/REEPE57272.2023.10086745.
R. Ahmed Refai, A. H. Mansour, M. A- H.Ahmed, “Estimation of the Electric Field and Potential Distribution on Three Dimension Model of Polymeric Insulator Using Finite Element Method”, IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939, (2015).
M.Enokizono, and Yuji Tsuchida, “Optimal Design by Boundary Element Method with Fuzzy Inference”, IEEE Trans, on Magnetics, Vol.30, No.5, pp.3447-3450, Sept 1994.
Бакасова, А. Б. Адаптивный нейро-нечеткий подход оценки электрических полей электростатического разряда / А. Б. Бакасова, А. АсанУулу // Проблемы автоматики и управления. – 2023. – № 1(46). – С. 83–95. – EDN NYYCKH.
B. Marungsri, W. Onchantuek, A. Oonsivilai “Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method” World Academy of Science, Engineering and Technology, (2008).
EMS 2013 Program User’s guide, http://www.emworks.com.
Aydogmus, Z., &Cebeci, M. A new flashover dynamic model of polluted HV insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 11(4), 577–584, (2004).
Бакасова, А. Б. Применение нейронных сетей в задачах электромагнитных помех / А. Б. Бакасова, А. АсанУулу // Проблемы автоматики и управления. – 2022. – № 1(43). – С. 95–103. – EDN DJPYDH.
АсанУулу, А. Обзор альтернативных подходов к моделированию электромагнитной обстановки на высоковольтной электрической подстанции / А. АсанУулу, А. Б. Бакасова // Проблемы автоматики и управления. – 2022. – № 2(44). – С. 4–14. – EDN JZHUPM.
Mohamed M. Zahra, Mohamed H. Essai, Ali R. AbdEllah, "Performance Functions Alternatives of Mse for Neural Networks Learning", International Journal of Engineering Research & Technology (IJERT), Vol. 3, Issue 1, pp. 967-970, January - (2014).
Ali R. AbdEllah, Mohamed H. Essai, Ahmed Yahya, “Robust Backpropagation Learning Algorithm Study for Feed Forward Neural Networks”, Thesis, Al- Azhar University, Faculty of Engineering, -(2016).
Z. Aydogmus, “A neural network-based estimation of electric fields along high voltage insulators”, Expert Systems with Applications 36 8705-8710, www.elsevier.com/locate/eswa, (2009).
Nasrat L. S., &Aly.Saleh, “Evaluation ofFlashover Voltage on Hydrophobic Polymer Insulators with Artificial Neural Network”, International Journal of Electrical and Computer Engineering (IJECE) Vol.2, No.4, pp. 487~494, August (2012)
Demuth, Howard & Beale, Mark. (2000). Neural Network Toolbox for use with MATLAB
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2023 Аскат Асан уулу
This work is licensed under a Creative Commons Attribution 4.0 International License.