RESEARCH ON APPROACHES TO ASSESSING AND FORECASTING GEOTECHNICAL RISKS

Authors

  • D.A. Karimova Institute of Mechanical Engineering, Automation and Geomechanics of the National Academy of Sciences of the Kyrgyz Republic

Keywords:

геотехнический мониторинг, машинное обучение.

Abstract

The article is devoted to the application of machine learning to improve geotechnical monitoring methods. The application of machine learning (ML) methods in the assessment of risks associated with the safety of infrastructure projects in natural and man-made conditions is considered. The stages of ML application are described, including data collection and processing, selection of algorithms, training and validation of models. The advantages and limitations of traditional and modern methods are discussed, cases of successful ML implementation in various geotechnical projects are presented, as well as examples of use in various conditions.

References

Геотехнический мониторинг [Электронный ресурс]. URL: https://official.academic.ru/4104/%D0%93%D0%B5%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%BC%D0%BE%D0%BD%D0%B8%D1%82%D0%BE%D1%80%D0%B8%D0%BD%D0%B3 (дата обращения: 20.04.2024).

Грязнова Е.М. Геотехнический мониторинг в строительстве / Е.М. Грязнова, А.Н. Гаврилов, Д.Ю. Чунюк. - Москва : МИСИ—МГСУ, 2017. - 82 с.

Улицкий В.М., Шашкин А.Г., Шашкин К.Г. Геотехническое сопровождение развития городов. СПб.: Стройиздат Северо-Запад, Геореконструкция, 2010. 551 с.

Далматов Б.И. Механика грунтов, основания и фундаменты // Стройиздат, 1998.

Далматов Б.И. Механика грунтов. Основы геотехники. Ч. 1. // Москва, 2000.

Zhang C, Liang M, Song X, Liu L,Wang H, Li W, et al. Generative adversarial network for geological prediction based on TBM operational data. Mechanical Systems and Signal Processing. 2022;162:108035.

Fang H, Shao Y, Xie C, Tian B, ShenC, Zhu Y, et al. A new approach tospatial landslide susceptibility predictionin karst mining areas based onexplainable Artificial Intelligence.Sustainability. 2023;8, 15(4):3094. DOI:10.3390/su15043094

Krechowicz M, Krechowicz A. Risk assessment in energy infrastructure installations by horizontal directional drilling using machine learning. Energies. 2021;14(2):289. DOI: 10.3390/en14020289

Carri A. Innovative application of iot technologies to improve geotechnical monitoring tools and early warning performances. In: Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment: CRIT-RE-BUILT. Proceedings of the International Conference; November 7-9, 2019, Iași, Romania. Switzerland:

Mahdi IM, Ebid AM, Khallaf R.Decision support system for optimum soft clay improvement technique for highway construction projects. Ain Shams Engineering Journal. 2020;11(1): 213-223. DOI: 10.1016/j.asej.2019.08.007

Hallaji SM, Fang Y, Winfrey BK.Predictive maintenance of pumps in civilinfrastructure: State-of-the-art,challenges and future directions. Automation in Construction. 2022;134: 104049. DOI: 10.1016/j.autcon.2021.104049

Seyedzadeh S, Rahimian FP, Oliver S, Rodriguez S, Glesk I. Machine learning modelling for predicting nondomestic buildings energy performance: A model to support deep energy retrofit decision-making. Applied Energy. 2020; 279:115908. DOI: 10.1016/j.apenergy.2020.115908

Sircar A, Yadav K, Rayavarapu K, Bist N, Oza H. Application of machine learning and artificial intelligence in oil and gas industry. Petroleum Research. 2021;6(4):379-391. DOI: 10.1016/j.ptlrs.2021.05.009

Bravo-López E, Fernández Del Castillo T, Sellers C, Delgado-García J.Landslide susceptibility mapping of landslides with artificial neural networks: Multi-approach analysis of backpropagation algorithm applying the neuralnet package in Cuenca. Ecuador. Remote Sensing. 2022;14(14):3495. DOI: 10.3390/rs14143495

Zhang W, Gu X, Tang L, Yin Y, Liu D, Zhang Y. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge. Gondwana Research. 2022;109:1-17. DOI: 10.1016/j.gr.2022.03.015

Lu X, Xu Y, Tian Y, Cetiner B,Taciroglu E. A deep learning approach torapid regional post-event seismic damage assessment using timefrequency distributions of ground motions. Earthquake Engineering & Structural Dynamics. 2021;50(6): 1612-1627. DOI: 10.1002/eqe.3415

Kim HS, Sun CG, Lee MG, Cho HI.Multivariate geotechnical zonation of seismic site effects with clusteringblended model for a city area, South Korea. Engineering Geology. 2021;294: 106365. DOI: 10.1016/j.enggeo.2021.106365

Мэрфи К. П. Вероятностное машинное обучение: введение / пер. с англ. А. А. Слинкина / К.П. Мэрфи. - Москва : ДМК Пресс, 2023. - 990 с.

Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение / пер. с анг. А. А. Слинкина. – 2-е изд., испр. – М.: ДМК. Пресс, 2018. – 652 с.

Downloads

Published

2024-08-17

Issue

Section

INFORMATION TECHNOLOGY AND INFORMATION PROCESSING

Categories