ON THE SOLVABILITY OF THE OPTIMIZATION PROBLEM WITH MINIMUM ENERGY UNDER BOUNDARY CONTROL OF THE OSCILLATIONAL PROCESS
Keywords:
boundary value problem, generalized solution, energy integral, functional, boundary control, optimal control.Abstract
The paper studies the solvability of the optimization problem for oscillatory processes described by partial integro-differential equations with an integral Fredholm operator while minimizing the energy integral of the control force. The study was carried out using the concept of a generalized solution of the boundary value problem of a controlled oscillatory process. In the optimization problem, it is required to find a control that transfers the oscillatory process from one state to another given state. In the course of the study, it was established that the desired optimal control is defined as a solution to an infinite-dimensional system of Fredholm integral equations of the first kind, and sufficient conditions for the existence of a solution to this ill-posed problem were found.
References
1. Егоров А.И. Оптимальное управление тепловыми и диффузионными процессами - М.: Наука, 1978.-500с.
2. Керимбеков А., Доулбекова С.Б. О разрешимости задачи нелинейной оптимизации колебательных процессов при появлении особых управлений //Вестник Евразийского национального университета имени Л.Н.Гумилева. Серия Математика. Компьютерные науки. Механика, -2020, Т.132, №3. –С. 6-16.
3. Люстерник Л.А., Соболев В.И. Элементы функционального анализа.- М.: Наука, 1965.-520с.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Доулбекова С.Б., Керимбеков А., Баетов А.К.
This work is licensed under a Creative Commons Attribution 4.0 International License.