AIR QUALITY FORECASTS MODELS BASED ON MACHINE LEARNING METHODS CONSIDERING TEMPORAL AND SPATIAL DEPENDENCIES
Keywords:
air quality prediction models, time series, spatiotemporal dependencies, machine learning, graph neural networksAbstract
An analytical overview has been presented of the most commonly used models for predicting air pollution processes, which are characterized by complex and non-stationary temporal dependencies. The spatial layout, in addition to dynamic changes over time, also affects air quality. A relatively new tool for addressing air quality forecasting tasks, which takes into account not only temporal but also spatial dependencies, is graph neural networks. The main feature of this type of network is the use of information gathered from the dynamic interactions between neighboring geographic points (cities, districts, streets), which are weighted according to the distance between them.
References
1. Manuel Méndez, • Mercedes G. Merayo, Manuel Núñez. Machine learning algorithms to forecast air quality: a survey// Artifcial Intelligence Review (2023) 56:10031–10066 https://doi.org/10.1007/s10462-023-10424-4
2. Лыченко Н.М. Корреляционный анализ метеопараметров и концентраций твердых частиц РМ2.5 в атмосферном воздухе г. Бишкек и его применение в моделях машинного обучения // Проблемы автоматики и управления. – 2024. – № 2(50). – С. 88-96. – EDN ZIWQVG
3. A Hybrid Model for Spatiotemporal Air Quality Prediction Based on Interpretable Neural Networks and a Graph Neural Network
4. Pengfei Li, Tong Zhang and Yantao Jin. A Spatio-Temporal Graph Convolutional Network for Air Quality Prediction, Sustainability 2023, 15, 7624. https://doi.org/10.3390/su15097624
5. Li D, Yu H, Geng Y-a, Li X, Li Q (2021) DDGNet: A dual-stage dynamic spatio-temporal graph net-work for PM2.5 forecasting. In: 2021 IEEE International Conference on Big Data (Big Data), pp 1679–1685. https:// doi. org/ 10. 1109/ BigData525 89. 2021. 96719 41
6. He, Z.; Liu, P.; Zhao, X.; He, X.; Liu, J.; Mu, Y. Responses of Surface O3 and PM2.5 Trends to Changes of Anthropogenic Emissions in Summer over Beijing during 2014–2019: A Study Based on Multiple Linear Regression and WRF-Chem. Sci. Total Environ.2022, 807, 150792.
7. Великанова, Л. И. Мультирегрессионные и обобщенно- регрессионные нейросетевые модели краткосрочного прогноза загрязнения РМ2.5 в г. Бишкек с учетом метеорологических параметров / Л. И. Великанова, Н. М. Лыченко // Проблемы автоматики и управления. – 2019. – № 2(37). – С. 16-25. – DOI 10.5281/zenodo.3594777. – EDN MNNDYU.
8. Kulkarni, G.E.; Muley, A.A.; Deshmukh, N.K.; Bhalchandra, P.U. Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Maharashtra, India. Model. Earth Syst. Environ. 2018, 4, 1435–1444.
9. Mirche Arsov, Eftim Zdravevski, Petre Lameski, Roberto Corizzo, Nikola Koteli, Sasho Gramatikov, Kosta Mitreski, and Vladimir Trajkovik. Multi-Horizon Air Pollution Forecasting with Deep Neural Networks // Sensors (Basel). 2021 Feb; 21(4): 1235. doi: 10.3390/s21041235
10. Верзунов С.Н., Лыченко Н.М. Анализ и ARIMA- модели динамики изменения концентрации РМ2.5 в атмосферном воздухе г. Бишкек // Проблемы автоматики и управления.- N1. Бишкек: Илим, 2019. –С. 21-30.
11. Balogun A-L, Tella A (2022) Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression. Chemosphere 299:134250. https:// doi. org/ 10. 1016/j. chemo sphere. 2022. 134250
12. Tella A, Balogun A-L, Adebisi N, Abdullah S (2021) Spatial assessment of PM10 hotspots using Random Forest, K-Nearest Neighbour and Naïve Bayes. Atmos Pollut Res 12(10):101202. https:// doi. org/ 10. 1016/j. apr. 2021. 101202
13. Morapedi TD and Obagbuwa IC (2023) Air pollution particulate matter (PM2.5) predictionin South African cities using machine learning techniques. Front. Artif. Intell. 6:1230087. doi: 10.3389/frai.2023.1230087
14. Keramat-Jahromi, M., Mohtasebi, S. S., Mousazadeh, H., Ghasemi-Varnamkhasti, M. & Rahimi-Movassagh, M. Real-time mois-ture ratio study of drying date fruit chips based on on-line image attributes using kNN and random forest regression methods. Measurement 172, 108899 (2021).
15. Pisner, D. A. & Schnyer, D. M. Support Vector Machine. Machine Learning: Methods and Applications to Brain Disorders (Elsevier Inc, 2019).
16. Sarkhosh, M. et al. Indoor Air Quality associations with sick building syndrome: An application of decision tree technology. Build. Environ. 188, 107446 (2021).
17. Mr. V. Devasekhar, Dr. P. Natarajan: Prediction of Air Quality and Pollution using Statistical Methods and Machine Learning Techniques. In: International Journal of Advanced Computer Science and Applications. Vol. 14, No. 4 (2023)
18. Wang,W., Zhao, S., Jiao, L., Taylor, M., Zhang, B., Xu, G., et al. (2019). Estimation of PM2.5 Concentrations in China Using a Spatial Back Propagation Neural Network. Sci. Rep. 9 (1), 13788–13810. doi:10.1038/s41598-019-50177-1
19. Великанова, Л. И. Моделирование краткосрочного прогноза загрязненности воздуха твердыми частицами на основе искусственных нейронных сетей с учетом фактора загрязнения / Л. И. Великанова, Н. М. Лыченко // Проблемы автоматики и управления. – 2022. – № 3(45). – С. 110-118. – EDN TGNBLC.
20. Zhou, Q., Jiang, H., Wang, J., and Zhou, J. A Hybrid Model for PM 2.5 Forecasting Based on Ensemble Empirical Mode Decomposition and a General Regression Neural Network. Sci. Total Environ. 496, 264–274, 2014. doi:10.1016/j. scitotenv.2014.07.051
21. Ragab, M. G., Abdulkadir, S. J., Aziz, N., Al-Tashi, Q., Alyousifi, Y., Alhussian, H., et al. A Novel One-Dimensional CNN with Exponential Adaptive Gradients for Air Pollution Index Prediction. Sustainability 12 (23), 2023. doi:10.3390/su122310090
22. Stojov, V., Koteli, N., Lameski, P., Zdravevski, E.: Application of machine learning and time-series analysis for air pollution prediction. CIIT 2018 (2018).
23. Lychenko, N., Sorokovaya, A.: Application of LSTM neural networks for classification of air quality index in Bishkek. In: Problems of automation and control 1 (38), 70-80 (2020). DOI: 10.5281/zenodo.3904130
24. Loy-Benitez, J.; Vilela, P.; Li, Q.; Yoo, C. Sequential Prediction of Quantitative Health Risk Assessment for the Fine Particulate Matter in an Underground Facility Using Deep Recurrent Neural Networks. Ecotoxicol. Environ. Saf. 2019, 169, 316–324.
25. Liao, Hai-bin &Wu, Mou & Yuan, Li & Hu, Yiyang & Gong, Haowei. (2024). PM2.5 prediction based on dynamic spatiotemporal graph neural network. Applied Intelligence. 54. 11933-11948. 10.1007/s10489-024-05801-7.
26. Wang, S.; Li, Y.; Zhang, J.; Meng, Q.; Meng, L.; Gao, F. PM2.5-GNN: A Domain Knowledge Enhanced Graph Neural Network For PM2.5 Forecasting. In Proceedings of the 28th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 3–6 November 2020; pp. 163–166.
27. Chang, F.; Ge, L.; Li, S.Y.; Wu, K.Y.; Wang, Y.Q. Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction. Connect. Sci. 2021, 33, 427–446.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Лыченко Н.М
This work is licensed under a Creative Commons Attribution 4.0 International License.