Theory and Methodology for Developing an Algorithm of Optimal Situational Control of Energy Balance in Automated Distributed Hybrid Energy Complexes
Keywords:
automated distributed hybrid energy complexes; renewable energy sources; intelligent systems; reliability; energy balance; battery; power; algorithm; optimization; forecasting; situation; control.Abstract
The structure of the power flow storage and distribution system of the Automated Distributed Hybrid Energy Complex (ADHEC) adopted in this work allows for easy modification of its configuration by adding or removing various components (ballast sources (BS), ballast loads (BL), renewable energy generation units, and loads of different types), as well as enabling or disabling interaction between the ADHEC and the global grid (GG).
A mathematical model has been developed for the adopted structure, taking into account various scenarios that arise during the circulation of power flows within the ADHEC. Based on this, the problem of synthesizing an optimal situational control algorithm (OSCA) for managing the energy balance has been formulated. A solution approach is proposed that enables the construction of a multi-level algorithm GOSCA,θmG_{OSCA, \theta_m}GOSCA,θm, where m=0,1,…,M−1m = 0, 1, \dots, M-1m=0,1,…,M−1, consisting of sequentially functioning sub-algorithms:
GOSCA,θm:GSDN,θm⇒ibal(1)(θm)⇒GBATT1,θm⇒ibal(2)(θm)⇒GBATT2,θm⇒ibal(3)(θm)⇒GBS,BL,θm⇒iGG(+,−)(θm)G_{OSCA, \theta_m}: \quad G_{SDN, \theta_m} \Rightarrow i_{bal}^{(1)}(\theta_m) \Rightarrow G_{BATT1, \theta_m} \Rightarrow i_{bal}^{(2)}(\theta_m) \Rightarrow G_{BATT2, \theta_m} \Rightarrow i_{bal}^{(3)}(\theta_m) \Rightarrow G_{BS,BL,\theta_m} \Rightarrow i_{GG}^{(+,-)}(\theta_m)GOSCA,θm:GSDN,θm⇒ibal(1)(θm)⇒GBATT1,θm⇒ibal(2)(θm)⇒GBATT2,θm⇒ibal(3)(θm)⇒GBS,BL,θm⇒iGG(+,−)(θm)
These sub-algorithms perform the following functions:
-
GSDN,θmG_{SDN, \theta_m}GSDN,θm: maintains the current voltage level of the capacitor uSDN(θm)u_{SDN}(\theta_m)uSDN(θm) at the assembly and distribution node (SDN) by issuing an optimal control signal in the form of a balancing current ibal(1)(θm)i_{bal}^{(1)}(\theta_m)ibal(1)(θm);
-
GBATT1,θmG_{BATT1, \theta_m}GBATT1,θm, GBATT2,θmG_{BATT2, \theta_m}GBATT2,θm, GBS,BL,θmG_{BS,BL, \theta_m}GBS,BL,θm: optimal situational sub-algorithms for the sequential implementation of the balancing current ibal(1)(θm)i_{bal}^{(1)}(\theta_m)ibal(1)(θm) using respective ADHEC components (BATT1(1), BATT1(2)), (BATT2(1), BATT2(2)), (BS, BL) in order to maintain the power exchange iGG(+,−)(θm)i_{GG}^{(+,-)}(\theta_m)iGG(+,−)(θm) between the global grid and the ADHEC near its nominal value iGGnom(θm)i_{GG}^{nom}(\theta_m)iGGnom(θm).
The algorithm GOSCA,θmG_{OSCA, \theta_m}GOSCA,θm has the advantageous property that its structure is easily modifiable when configuring the ADHEC system during the design phase of automated renewable-based energy complexes (AREC) for different regions with their respective renewable energy sources. This adaptability is essential for the development of an automated design system for AREC.
References
1. M.Asanov, S.Asanova, M.Safaraliev, I. Zicmane, S. Beryozkina, S. Suerkulov. Design methodology of intelligent autonomous distributed hybrid power complexes with renewable energy sources. International Journal of Hydrogen Energy. Volume 48, Issue 81, 22 September 2023. Pages 31468-31478.
2. Лукутин Б.В. Способы снижения расхода топлива дизельных электростанций / Лукутин Б.В., Шандарова Е.Б. // Современные проблемы науки и образования. – 2013. - №2. - С. 139.
3. Обухов С.Г. Двухконтурный накопитель энергии для гибридных энергетических систем с возобновляемыми источниками энергии / Обухов С.Г., Плотников И.А., Ибрагим А., Маслов В.Г. // Известия Томского университета. Инжиниринг георесурсов. - 2020. - Т. 331. № 1. - С. 64-76.
4. Лукутин Б.В. Способы снижения расхода топлива дизельных электростанций / Лукутин Б.В., Шандарова Е.Б. // Электричество. – 2012. - №6. - С. 24-29.
5. Asanova S.M. Optimization of the structure of autonomous distributed hybrid power complexes and energy balance management in them / Asanova S.M., Kokin S.E., Dmitriev S.A., Safaraliev M., Arfan Kh., Zhabudaev T., Satarkulov Т.K. // International Journal of Hydrogen Energy. – 2021. - Volume 46, Issue 70. – P. 34542-34549.
6. Asanova S.M., Ahyoev J.S, Askarbek N., Suerkulov S.M., Asanova D.U. Safaraliev M. Method for designing drop-of-wire recognition systems on sections of undistorted two-wire power transmission lines. IOP Conference Series: Materials Science and Engineering, Volume 966, 15th International Conference on Industrial Manufacturing and Metallurgy 18-19 June 2020, Nizhny Tagil, Russia
7. Сатаркулов К.А., Асанова С.М. и др. Токопроводящая жила проводов и кабелей. – Патент KG № 1187. 2009 г.
8. Asanov M., Kokin S., Asanova S.M., Satarkulov K., Dmitriev S., Safaraliev M. The use of Petri computing networks for optimization of the structure of distribution networks to minimize power losses. Energy Reports. Vol. 6, Supplement 9, December 2020, 1337-1343
9. Asanova S., M.Safaraliev, I. Zicmane, S. Suerkulov, S. Kokin. Improving the reliability of the energy balance management process in hybrid power complexes with green hydrogen and energy storage International Journal of Hydrogen Energy 3 April 2024
10. Asanov M., Asanova S., Semenenko S., Matrenin P., Safaraliev M., Rusina A. Optimal amount of information determination for power system steady state estimation. Energy Reports, Volume 8, Supplement 1, April 2022, Pages 1085-1092
11. Куо Б. Теория и проектирование цифровых систем управления: Пер. с англ. – М.: Машиностроение, 1986. – 448 с.
12. Медич Дж. Статистически оптимальные линейные оценки и управление. / Пер. с англ. Под ред. А.С. Шаталова. М., «Энергия», 1973. С. 440.
13. М.С. Асанов, С.М. Асанова, К.А. Сатаркулов. Структурная модель вычислительных сетей Петри. Известия КГТУ. – Бишкек, 2008. – №13. – С. 78-85.
14. М.С. Асанов, С.М. Асанова, К.А. Сатаркулов. Вычислительные компоненты, язык описания и правила функционирования вычислительных сетей Петри. Известия КГТУ. – Бишкек, 2008. – №13. – С. 85-95.
15. Асанова С.М. Развитие сетей Петри для разработки самоорганизующихся многокомпонентных вычислительных алгоритмов решения задач электроэнергетики / Проблемы автоматики и управления, НАН КР, июль 2022, No 2 (44). С. 15-21
16. Сафаралиев М.Х., Матренин П.В., Дмитриев С.А., Асанова С.М., Ахьеев Дж.С. Разработка моделей среднесрочного прогнозирования электропотребления в изолированно работающих энергосистемах на основе ансамблевых методов машинного обучения / Известия НТЦ ЕДИНОЙ ЭНЕРГЕТИЧЕСКОЙ СИСТЕМЫ. 2021. №1 (84)). С.32-39
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Асанова С.М., Жабудаев Т.Ж. , Асанова Д.У., Калмурзаев А.Б., Сатаркулов К., Асанов М.С.

This work is licensed under a Creative Commons Attribution 4.0 International License.