APPLICATION OF NEURAL NETWORK FOR SIMULATION OF ELECTROSTATIC DISCHARGES IN COMPUTER MODELS

Authors

  • Askat Asan uulu Кыргызский государственный технический университет им. И. Раззакова , Kyrgyz State Technical University named after. I. Razzakova

Keywords:

electrostatic discharge, deep neural networks, hybrid modeling frameworks, frequency spectrum, physically informed neural networks

Abstract

Modeling of electrostatic discharge (ESD) is critical to ensure the reliability and safety of electronic systems, aerospace components and industrial equipment. However, accurate modeling of ESD events remains a major challenge due to their highly nonlinear, stochastic and multi-scale nature. Traditional numerical methods such as finite element analysis (FEA) and finite difference time domain (FDTD) methods often suffer from computational inefficiency and limited prediction accuracy when modeling complex discharge phenomena [1].

Recent advances in machine learning, particularly deep neural networks (DNNs), offer a promising alternative to improve ESD modeling. Using data-driven approaches, neural networks can learn underlying physical patterns from experimental or high-fidelity simulation data, enabling faster and more accurate prediction of discharge behavior. Methods such as physically informed neural networks (PINNs) and hybrid modeling frameworks can bridge the gap between empirical observations and theoretical models, improving the accuracy of ESD modeling and reducing computational costs [2].

This paper reviews the potential of neural networks in advancing ESD modeling, discussing key methodologies, challenges, and future directions in this emerging field.

References

[1] M.T. Gengog“lu, M. Cebeci, “Investigation of pollution flashover on high voltage insulators using artificial neural network”, Elsevier, Expert Systems with Applications 36 7338-734, (2009).

[2] A. B. Bakasova and A. Uulu Askat, "Neuro-fuzzy approach to identification of electromagnetic fields of electrostatic discharge," 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), Moscow, Russian Federation, 2023, pp. 1-5, doi: 10.1109/REEPE57272.2023.10086745.

[3] R. Ahmed Refai, A. H. Mansour, M. A- H.Ahmed, “Estimation of the Electric Field and Potential Distribution on Three Dimension Model of Polymeric Insulator Using Finite Element Method”, IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939, (2015).

[4] M.Enokizono, and Yuji Tsuchida, “Optimal Design by Boundary Element Method with Fuzzy Inference”, IEEE Trans, on Magnetics, Vol.30, No.5, pp.3447-3450, Sept 1994.

[5] Бакасова, А. Б., & Асан уулу , А. (2023). АДАПТИВНЫЙ НЕЙРО-НЕЧЕТКИЙ ПОДХОД ОЦЕНКИ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ ЭЛЕКТРОСТАТИЧЕСКОГО РАЗРЯДА. Проблемы автоматики и управления, (1), 83–95. извлечено от http://pau.imash.kg/index.php/pau/article/view/396

[6] B. Marungsri, W. Onchantuek, A. Oonsivilai “Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method” World Academy of Science, Engineering and Technology, (2008).

[7] EMS 2013 Program User’s guide, http://www.emworks.com.

[8] Aydogmus, Z., & Cebeci, M. A new flashover dynamic model of polluted HV insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 11(4), 577-584, (2004).

[9] Бакасова, А., & Асан уулу, А. (2022). ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ В ЗАДАЧАХ ЭЛЕКТРОМАГНИТНЫХ ПОМЕХ. Проблемы автоматики и управления, (1), 95–103. извлечено от http://pau.imash.kg/index.php/pau/article/view/259

[10] Асан уулу, А., & Бакасова, А. Б. (2022). ОБЗОР АЛЬТЕРНАТИВНЫХ ПОДХОДОВ К МОДЕЛИРОВАНИЮ ЭЛЕКТРОМАГНИТНОЙ ОБСТАНОВКИ НА ВЫСОКОВОЛЬТНОЙ ЭЛЕКТРИЧЕСКОЙ ПОДСТАНЦИИ. Проблемы автоматики и управления, (2), 4–14. извлечено от http://pau.imash.kg/index.php/pau/article/view/307

[11] Mohamed M. Zahra, Mohamed H. Essai, Ali R. Abd Ellah, "Performance Functions Alternatives of Mse for Neural Networks Learning", International Journal of Engineering Research & Technology (IJERT), Vol. 3, Issue 1, pp. 967-970, January - (2014).

[12] Ali R. Abd Ellah, Mohamed H. Essai, Ahmed Yahya, “Robust Backpropagation Learning Algorithm Study for Feed Forward Neural Networks”, Thesis, Al- Azhar University, Faculty of Engineering, -(2016).

[13] Z. Aydogmus, “A neural network-based estimation of electric fields along high voltage insulators”, Expert Systems with Applications 36 8705-8710, www.elsevier.com/locate/eswa, (2009).

[14] Nasrat L. S., & Aly.Saleh, “Evaluation of Flashover Voltage on Hydrophobic Polymer Insulators with Artificial Neural Network”, International Journal of Electrical and Computer Engineering (IJECE) Vol.2, No.4, pp. 487~494, August (2012)

[15] Neural Network Toolbox: For use with MATLAB, the Math Works

Downloads

Published

2025-09-17

Issue

Section

TECHNICAL EQUIPMENT FOR CONTROL, DIAGNOSTIC AND CONTROL SYSTEMS