COMPARISON OF DEEP NEURAL NETWORKS BASED ON DIFFERENT PRE-TRAINED CNN FOR COVID-19 DIAGNOSIS FROM X-RAY IMAGES

Authors

  • Verzunov S.N. Machinery researching Institute of the National Academy of Sciences of the Kyrgyz Republic
  • Raimzhanov Kh.A. Kyrgyz-Russian Slavic University

Keywords:

COVID-19, deep learning, CNN, pretrained convolutional networks.

Abstract

Clinical studies have found that chest x-rays can be of great value in diagnosing patients with COVID-19, especially in addressing the lack of capacity in ambulances and hospitals. Deep learning methods are currently playing a dominant role in the development of high-performance classifiers for chest X-ray detection of this disease.

Given that many new neural network models have been developed for this purpose, the aim of this study is to explore options for trained convolutional neural networks to diagnose COVID-19 using chest x-rays.

 

References

Cohen J., Kupferschmidt K. Strategies shift as coronavirus pandemic looms. Science. 2020; 367

Лучевая диагностика коронавирусной болезни (COVID-19): организация, методология, интерпретация результатов: методические рекомендации / сост. С. П. Морозов, Д. Н. Проценко, С.В. Сметанина [и др.] // Серия «Лучшие практики лучевой и инструментальной диагностики». - Вып. 65. - М.: ГБУЗ «НПКЦ ДиТ ДЗМ», 2020.

Burns J, Movsisyan A, Stratil JM, et al. Travel-related control measures to contain the COVID-19 pandemic: a rapid review. Cochrane Database of Systematic Reviews 2020, Issue 9. Art. No.: CD013717. DOI: 10.1002/14651858.CD013717.

Wong HYF, Lam HYS, Fong AH-T, Leung ST, Chin TWY, et al. Frequency and distribution of chest radiographic findings in COVID-19 positive patients. Radiology. 2020.

Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15:e1002683.

Ucar F, Korkmaz D. COVIDiagnosis-net: deep bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images. Med Hypotheses. 2020;140:109761.

Khan AI, Shah JL, Bhat MM. CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput Methods Programs Biomed. 2020;196:105581.

Waheed A, Goyal M, Gupta D, Khanna A, Al-Turjman F, Pinheiro PR. CovidGAN: data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access. 2020;8:91916–23.

Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med. 2020;121:103792.

Redmon J, Farhadi A. Yolo9000: better, faster, stronger. arXiv 2016; 1612.08242

Apostolopoulos ID, Mpesiana TA. Covid. 19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys Eng Sci Med. 2020;43:635–40.

Pham, T.D. Classification of COVID-19 chest X-rays with deep learning: new models or fine tuning?. Health Inf Sci Syst 9, 2 (2021). https://doi.org/10.1007/s13755-020-00135-3

https://arxiv.org/abs/1608.06993 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1905.11946 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1602.07261 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1512.00567 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1704.04861 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1801.04381 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1905.02244 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1707.07012 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1512.03385 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1603.05027 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1409.1556 (дата обращения: 23.03.2021)

https://arxiv.org/abs/1610.02357 (дата обращения: 23.03.2021)

https://keras.io (дата обращения: 30.03.2021)

https://arxiv.org/abs/1904.09237 (дата обращения: 30.03.2021)

Daniel S. Kermany et all, Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning, Cell, Volume 172, Issue 5, 2018, Pages 1122-1131.e9, ISSN 0092-8674, https://doi.org/10.1016/j.cell.2018.02.010.

COVID-19 Image Data Collection: Prospective Predictions Are the FutureJoseph Paul Cohen and Paul Morrison and Lan Dao and Karsten Roth and Tim Q Duong and Marzyeh GhassemiarXiv:2006.11988, https://github.com/ieee8023/covid-chestxray-dataset, 2020

https://arxiv.org/abs/1703.01365 (дата обращения 29.03.2021)

Weinstock MB, et al. Chest X-ray fndings in 636 ambulatory patients with COVID-19 presenting to an urgent care center: a normal chest X-ray is no guarantee. J Urgent Care Med. 2020;14:13–8.

Downloads

Published

2021-05-03

Issue

Section

INFORMATION TECHNOLOGY AND INFORMATION PROCESSING

Categories